CV学习笔记-BP神经网络代码Python实例

简介: CV学习笔记-BP神经网络代码Python实例

CV学习笔记-BP神经网络代码Python实例

一. 任务描述

给定数据集(txt文件),采用随机梯度下降的方式进行神经网络的学习,完成权重参数的更新,使得输入的数据能够接近输出label。

关于BP神经网络的手推和原理见笔者《CV学习笔记-推理和训练》《CV学习笔记-BP神经网络》

txt文件类似下图所示

2018122814580746.png

col1 col2 col3
输入1 输入2 label

二. 程序设计

1. 神经网络设计

NeuralNetWork

类内初始化: __init__用以设置神经网络的参数(输入层参数、隐藏层参数、输出层参数、学习率)

类内方法: train用于训练数据,更新权重

读取数据: loadDataSet用于在txt文件中读取数据,包括输入值和label值

随机梯度下降处理: stocGradDescent用于处理训练数据的过程

2. 具体设计

  • NeuralNetWork类
class NeuralNetWork:
    def __init__(self, input_nodes, hidden_nodes, out_nodes, lr):
      # 设置输入个数
        self.innodes = input_nodes
        # 设置隐藏层节点个数
        self.hnodes = hidden_nodes
        # 设置输出节点个数
        self.onodes = out_nodes
        # 设置学习率,用于反向更新
        self.lr = lr
        # self.weight_i2h = np.ones((self.hnodes, self.innodes))
        # self.weight_h2o = np.ones((self.onodes, self.hnodes))
        # 随机初始化比1矩阵效果要好很多
        # 权重矩阵(输入到隐藏)
        self.weight_i2h = (numpy.random.normal(0.0, pow(self.hnodes,-0.5), (self.hnodes,self.innodes) )  )
        # 权重矩阵(隐藏到输出)
        self.weight_h2o = (numpy.random.normal(0.0, pow(self.onodes,-0.5), (self.onodes,self.hnodes) )  )
        # 设置激活函数(sigmoid)
        self.activation_function = lambda x: 1.0/(1+np.exp(-x))
        pass
  '''
  训练方法,输入一次训练的输入和label
  '''
    def train(self, inputs_list, targets_list):
        inputs = numpy.array(inputs_list, ndmin=2).T
        target = np.array(targets_list, ndmin=2).T
        # wx+b
        hidden_inputs = np.dot(self.weight_i2h, inputs)
        # 激活作为隐藏层的输出
        hidden_outputs = self.activation_function(hidden_inputs)
        # wx+b
        o_inputs = np.dot(self.weight_h2o, hidden_outputs)
        # 激活作为输出
        o_outputs = self.activation_function(o_inputs)
        # 损失函数
        loss = (target - o_outputs) ** 2 * 0.5
        # 输出误差,用于反向更新
        error = target - o_outputs
        # error = target - o_outputs
        # 隐藏层误差,用于反向更新
        hidden_error = np.dot(self.weight_h2o.T, error * o_outputs * (1 - o_outputs))
        # 梯度
        gradO = error * o_outputs * (1 - o_outputs)
        # 反向更新,详见笔者博客[《CV学习笔记-BP神经网络》(https://blog.csdn.net/qq_38853759/article/details/121930413)
        self.weight_h2o += self.lr * np.dot((error * o_outputs * (1 - o_outputs)), np.transpose(hidden_outputs))
        gradI = hidden_error * hidden_outputs * (1 - hidden_outputs)
        # 反向更新
        self.weight_i2h += self.lr * np.dot((hidden_error * hidden_outputs * (1 - hidden_outputs)),
                                            np.transpose(inputs))
        return loss
  • 读取数据集并处理
def loadDataSet():
    data = []
    label = []
    fr = open('testSet.txt')
    for line in fr.readlines():
        lineArr = line.strip().split()
        data.append([1.0, float(lineArr[0]), float(lineArr[1])])
        label.append(int(lineArr[2]))
    data = np.array(data)
    label = np.array(label)
    return data, label
  • 训练过程处理
def stocGradDescent(data, label):
    m, n = np.shape(data)
    for iter in range(200):
        total_loss = 0
        for i in range(m):
            # if label[i] == 1:
            #     pass
            # elif label[i] == 0:
            #     pass
            # 累计每个epoch的loss观察效果
            total_loss += net.train(data[i], label[i])
        print("NO.{} Loss={}".format(iter, total_loss))

三、实践代码

import numpy
import numpy as np
class NeuralNetWork:
    def __init__(self, input_nodes, hidden_nodes, out_nodes, lr):
        self.innodes = input_nodes
        self.hnodes = hidden_nodes
        self.onodes = out_nodes
        self.lr = lr
        # self.weight_i2h = np.ones((self.hnodes, self.innodes))
        # self.weight_h2o = np.ones((self.onodes, self.hnodes))
        # 随机初始化比1矩阵效果要好很多
        self.weight_i2h = (numpy.random.normal(0.0, pow(self.hnodes,-0.5), (self.hnodes,self.innodes) )  )
        self.weight_h2o = (numpy.random.normal(0.0, pow(self.onodes,-0.5), (self.onodes,self.hnodes) )  )
        self.activation_function = lambda x: 1.0/(1+np.exp(-x))
        pass
    def train(self, inputs_list, targets_list):
        inputs = numpy.array(inputs_list, ndmin=2).T
        target = np.array(targets_list, ndmin=2).T
        hidden_inputs = np.dot(self.weight_i2h, inputs)
        hidden_outputs = self.activation_function(hidden_inputs)
        o_inputs = np.dot(self.weight_h2o, hidden_outputs)
        o_outputs = self.activation_function(o_inputs)
        loss = (target - o_outputs) ** 2 * 0.5
        error = target - o_outputs
        # error = target - o_outputs
        hidden_error = np.dot(self.weight_h2o.T, error * o_outputs * (1 - o_outputs))
        gradO = error * o_outputs * (1 - o_outputs)
        self.weight_h2o += self.lr * np.dot((error * o_outputs * (1 - o_outputs)), np.transpose(hidden_outputs))
        gradI = hidden_error * hidden_outputs * (1 - hidden_outputs)
        self.weight_i2h += self.lr * np.dot((hidden_error * hidden_outputs * (1 - hidden_outputs)),
                                            np.transpose(inputs))
        return loss
# 从testSet.txt中读取数据存储至样本集data和标签集label
def loadDataSet():
    data = []
    label = []
    fr = open('testSet.txt')
    for line in fr.readlines():
        lineArr = line.strip().split()
        data.append([1.0, float(lineArr[0]), float(lineArr[1])])
        label.append(int(lineArr[2]))
    data = np.array(data)
    label = np.array(label)
    return data, label
def stocGradDescent(data, label):
    m, n = np.shape(data)
    for iter in range(200):
        total_loss = 0
        for i in range(m):
            # if label[i] == 1:
            #     pass
            # elif label[i] == 0:
            #     pass
            total_loss += net.train(data[i], label[i])
        print("NO.{} Loss={}".format(iter, total_loss))
if __name__ == '__main__':
    input_nodes = 3
    hidden_nodes = 3
    output_nodes = 1
    learning_rate = 0.1
    net = NeuralNetWork(input_nodes, hidden_nodes, output_nodes, learning_rate)
    data, label = loadDataSet()
    stocGradDescent(data, label)
    print(net.weight_i2h)
    print(net.weight_h2o)
    pass

txt文本文件内容请自行复制

-0.017612 14.053064 0
-1.395634 4.662541  1
-0.752157 6.538620  0
-1.322371 7.152853  0
0.423363  11.054677 0
0.406704  7.067335  1
0.667394  12.741452 0
-2.460150 6.866805  1
0.569411  9.548755  0
-0.026632 10.427743 0
0.850433  6.920334  1
1.347183  13.175500 0
1.176813  3.167020  1
-1.781871 9.097953  0
-0.566606 5.749003  1
0.931635  1.589505  1
-0.024205 6.151823  1
-0.036453 2.690988  1
-0.196949 0.444165  1
1.014459  5.754399  1
1.985298  3.230619  1
-1.693453 -0.557540 1
-0.576525 11.778922 0
-0.346811 -1.678730 1
-2.124484 2.672471  1
1.217916  9.597015  0
-0.733928 9.098687  0
-3.642001 -1.618087 1
0.315985  3.523953  1
1.416614  9.619232  0
-0.386323 3.989286  1
0.556921  8.294984  1
1.224863  11.587360 0
-1.347803 -2.406051 1
1.196604  4.951851  1
0.275221  9.543647  0
0.470575  9.332488  0
-1.889567 9.542662  0
-1.527893 12.150579 0
-1.185247 11.309318 0
-0.445678 3.297303  1
1.042222  6.105155  1
-0.618787 10.320986 0
1.152083  0.548467  1
0.828534  2.676045  1
-1.237728 10.549033 0
-0.683565 -2.166125 1
0.229456  5.921938  1
-0.959885 11.555336 0
0.492911  10.993324 0
0.184992  8.721488  0
-0.355715 10.325976 0
-0.397822 8.058397  0
0.824839  13.730343 0
1.507278  5.027866  1
0.099671  6.835839  1
-0.344008 10.717485 0
1.785928  7.718645  1
-0.918801 11.560217 0
-0.364009 4.747300  1
-0.841722 4.119083  1
0.490426  1.960539  1
-0.007194 9.075792  0
0.356107  12.447863 0
0.342578  12.281162 0
-0.810823 -1.466018 1
2.530777  6.476801  1
1.296683  11.607559 0
0.475487  12.040035 0
-0.783277 11.009725 0
0.074798  11.023650 0
-1.337472 0.468339  1
-0.102781 13.763651 0
-0.147324 2.874846  1
0.518389  9.887035  0
1.015399  7.571882  0
-1.658086 -0.027255 1
1.319944  2.171228  1
2.056216  5.019981  1
-0.851633 4.375691  1
-1.510047 6.061992  0
-1.076637 -3.181888 1
1.821096  10.283990 0
3.010150  8.401766  1
-1.099458 1.688274  1
-0.834872 -1.733869 1
-0.846637 3.849075  1
1.400102  12.628781 0
1.752842  5.468166  1
0.078557  0.059736  1
0.089392  -0.715300 1
1.825662  12.693808 0
0.197445  9.744638  0
0.126117  0.922311  1
-0.679797 1.220530  1
0.677983  2.556666  1
0.761349  10.693862 0
-2.168791 0.143632  1
1.388610  9.341997  0
0.317029  14.739025 0

四、 效果测试

2018122814580746.png

通过debug看效果:

可见刚开始网络的输出跟label的差距还是很大

2018122814580746.png

可以看到训练到一百多代的时候loss已经有了明显的下降

2018122814580746.png

此时debug看效果,可以看到效果明显改善,网络的输出已经比较小接近于真实label:0了

2018122814580746.png

label为1的效果也靠谱很多了

2018122814580746.png

最后打印出权重参数:

2018122814580746.png

相关文章
用MASM32按Time Protocol(RFC868)协议编写网络对时程序中的一些有用的函数代码
用MASM32按Time Protocol(RFC868)协议编写网络对时程序中的一些有用的函数代码
|
19天前
|
机器学习/深度学习 自然语言处理 并行计算
社区供稿 | Para-Former:DUAT理论指导下的CV神经网络并行化,提速多层模型推理
神经网络正越来越多地朝着使用大数据训练大型模型的方向发展,这种解决方案在许多任务中展现出了卓越的性能。然而,这种方法也引入了一个迫切需要解决的问题:当前的深度学习模型基于串行计算,这意味着随着网络层数的增加,训练和推理时间也会随之增长。
|
1月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
189 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
1月前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
90 3
|
2月前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
90 8
|
2月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
75 3
|
3月前
|
机器学习/深度学习 网络架构 计算机视觉
目标检测笔记(一):不同模型的网络架构介绍和代码
这篇文章介绍了ShuffleNetV2网络架构及其代码实现,包括模型结构、代码细节和不同版本的模型。ShuffleNetV2是一个高效的卷积神经网络,适用于深度学习中的目标检测任务。
132 1
目标检测笔记(一):不同模型的网络架构介绍和代码
|
2月前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
110 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
4月前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
135 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
3月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
89 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练