Kafka技术专题之「问题分析篇」消息队列服务端出现内存溢出OOM以及相关实战分析系列

简介: Kafka技术专题之「问题分析篇」消息队列服务端出现内存溢出OOM以及相关实战分析系列

主旨内容


本篇文章介绍Kafka处理大文件出现内存溢出 java.lang.OutOfMemoryError: Direct buffer memory,主要内容包括基础应用、实用技巧、原理机制等方面,希望对大家有所帮助。



broker端


配置文件须要配置的参数


  • message.max.bytes : kafka会接收单个消息size的最大限制, 默认为1M左右。若是producer发送比这个大的消息,kafka默认会丢掉。producer能够从callback函数中得到错误码:10。


  • log.segment.bytes : kafka数据文件的大小。默认为1G, 须要确保此值大于一个消息的最大大小。
  • replica.fetch.max.bytes : broker可复制的消息的最大字节数, 默认为1M。这个值比message.max.bytes大,不然broker会接收此消息,但没法将此消息复制出去,从而形成数据丢失。



bin目录下的kafka-run-class.sh中须要配置的参数


kafka是由scala和java编写的。因此须要调一些jvm的参数。java的内存分为堆内内存和堆外内存。



JVM参数系列


  • -Xms2048m, -Xmx2048m,设置的是堆内内存。


  • -Xms是初始可用的最大堆内内存。-Xmx设置的是最大可用的堆内内存。两者设置成同样是由于效率问题,可让jvm少作一些运算。若是这两个参数设置的过小,kafka会出现java.lang.OutOfMemoryError: Java heap space的错误。


  • -XX:MaxDirectMemorySize=8192m。这个参数配置的过小,kafka会出现java.lang.OutOfMemoryError: Direct buffer memory的错误。 由于kafka的网络IO使用了java的nio中的DirectMemory的方式,而这个申请的是堆外内存。




producer端


message.max.bytes,要设置大于发送最大数据的大小,不然会produce失败。




consumer端


receive.message.max.bytes : kafka 协议response 的最大长度,应该保证次参数大于等于message.max.bytes。不然消费会失败。


版本太低的librdkafka的receive.message.max.bytes只支持1000到1000000000。最新版本的能够支持到2147483647。


  • 使用此参数的时候还须要注意一个问题,在broker端设置的message.max.bytes为1000,consumer端设置的receive.message.max.bytes也为1000,可是除了数据,response还有协议相关字段,这时候整个response的大小就会超过1000。


“Receive failed: Invalid message size 1047207987 (0..1000000000): increase receive.message.max.bytes”这样的错误。


broker为什么会返回总量为1000大小的数据呢?


librdkafka有这样一个参数:fetch.max.bytes, 它有这样的描述:


Maximum amount of data the broker shall return for a Fetch request. Messages are fetched in batches by the consumer and if the first message batch in the first non-empty partition of the Fetch request is larger than this value, then the message batch will still be returned to ensure the consumer can make progress. The maximum message batch size accepted by the broker is defined via message.max.bytes (broker config) or max.message.bytes (broker topic config). fetch.max.bytes is automatically adjusted upwards to be at least message.max.bytes (consumer config).



自动调整到message.max.bytes这样的大小,返回的数据大小甚至还可能超过这个大小。


当设置receive.message.max.bytes == message.max.bytes == 1000 就会出上面说的那个错误。因此应该让consumer端设置的receive.message.max.bytes大于broker端设置的 message.max.bytes ,我猜应该大于单个最大数据的大小,这样就不会出错了,可是没有验证。


目前个人测试环境数据最大为500M左右。message.max.bytes 我设置了900M, receive.message.max.bytes设置了1000000000, 暂时没有出现问题。




内存方面须要考虑的问题


Brokers allocate a buffer the size of replica.fetch.max.bytes for each partition they replicate. If replica.fetch.max.bytes is set to 1 MiB, and you have 1000 partitions, about 1 GiB of RAM is required. Ensure that the number of partitions multiplied by the size of the largest message does not exceed available memory.

The same consideration applies for the consumer fetch.message.max.bytes setting. Ensure that you have enough memory for the largest message for each partition the consumer replicates. With larger messages, you might need to use fewer partitions or provide more RAM.



若是一个消息须要的处理时间很长,broker会认为consumer已经挂了,把partition分配给其余的consumer,而后循环往复, 这条record永远无法消费。方法是增长max.poll.interval.ms 参数。






相关文章
|
2月前
|
消息中间件 数据挖掘 Kafka
Apache Kafka流处理实战:构建实时数据分析应用
【10月更文挑战第24天】在当今这个数据爆炸的时代,能够快速准确地处理实时数据变得尤为重要。无论是金融交易监控、网络行为分析还是物联网设备的数据收集,实时数据处理技术都是不可或缺的一部分。Apache Kafka作为一款高性能的消息队列系统,不仅支持传统的消息传递模式,还提供了强大的流处理能力,能够帮助开发者构建高效、可扩展的实时数据分析应用。
102 5
|
4月前
|
KVM 虚拟化
KVM的热添加技术之内存
文章介绍了KVM虚拟化技术中如何通过命令行调整虚拟机内存配置,包括调小和调大内存的步骤,以及一些相关的注意事项。
99 4
KVM的热添加技术之内存
|
22天前
|
人工智能 物联网 C语言
SVDQuant:MIT 推出的扩散模型后训练的量化技术,能够将模型的权重和激活值量化至4位,减少内存占用并加速推理过程
SVDQuant是由MIT研究团队推出的扩散模型后训练量化技术,通过将模型的权重和激活值量化至4位,显著减少了内存占用并加速了推理过程。该技术引入了高精度的低秩分支来吸收量化过程中的异常值,支持多种架构,并能无缝集成低秩适配器(LoRAs),为资源受限设备上的大型扩散模型部署提供了有效的解决方案。
46 5
SVDQuant:MIT 推出的扩散模型后训练的量化技术,能够将模型的权重和激活值量化至4位,减少内存占用并加速推理过程
|
1月前
|
存储 缓存 监控
Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
本文介绍了Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
111 7
|
2月前
|
消息中间件 运维 UED
消息队列运维实战:攻克消息丢失、重复与积压难题
消息队列(MQ)作为分布式系统中的核心组件,承担着解耦、异步处理和流量削峰等功能。然而,在实际应用中,消息丢失、重复和积压等问题时有发生,严重影响系统的稳定性和数据的一致性。本文将深入探讨这些问题的成因及其解决方案,帮助您在运维过程中有效应对这些挑战。
42 1
|
3月前
|
存储 监控 算法
JVM调优深度剖析:内存模型、垃圾收集、工具与实战
【10月更文挑战第9天】在Java开发领域,Java虚拟机(JVM)的性能调优是构建高性能、高并发系统不可或缺的一部分。作为一名资深架构师,深入理解JVM的内存模型、垃圾收集机制、调优工具及其实现原理,对于提升系统的整体性能和稳定性至关重要。本文将深入探讨这些内容,并提供针对单机几十万并发系统的JVM调优策略和Java代码示例。
68 2
|
3月前
|
存储 消息中间件 大数据
大数据-69 Kafka 高级特性 物理存储 实机查看分析 日志存储一篇详解
大数据-69 Kafka 高级特性 物理存储 实机查看分析 日志存储一篇详解
56 4
|
3月前
|
消息中间件 存储 druid
大数据-156 Apache Druid 案例实战 Scala Kafka 订单统计
大数据-156 Apache Druid 案例实战 Scala Kafka 订单统计
57 3
|
3月前
|
消息中间件 druid 大数据
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(二)
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(二)
52 2
|
3月前
|
消息中间件 分布式计算 druid
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(一)
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(一)
69 1

相关产品

  • 云消息队列 Kafka 版