Java利用迪克斯特拉(Dijkstra)算法求拓扑关系最短路径

简介: Java利用迪克斯特拉(Dijkstra)算法求拓扑关系最短路径

 

算法简介

迪杰斯特拉算法(Dijkstra)是由荷兰计算机科学迪家迪杰斯特拉于1959年提出的,因此又叫狄克斯特拉算法。是从一个顶点到其余各顶点最短路劲算法,解决的是有权图中最短路径问题。迪杰斯特拉算法主要特点是从起始点开始,采用贪心算法的策略,每次遍历到始点距离最近且未访问过的顶点的邻接节点,直到扩展到终点为止。

代码实现思路

1.先初始化源节点(起始点)到其他各个拓扑节点的最短距离,可以用map存放,key为节点,value为节点到源节点的距离。

比如数据库中存储的各个拓扑点的信息,我们需要先把数据库各地拓扑点之间的距离,加载出来,用map和矩阵(二维数组)方式。数据库拓扑信息存储表demo:

id source target dist
1 v1 v2 15.67

soure和target为相连的两个拓扑点,dist是相连接的两个拓扑点之间的距离。

image.gif编辑

2.初始化源节点到各个节点之间的距离时,源节点到自身节点的距离设为0,到不相连或者间接相连的节点距离设置为最大。

3.从源节点开始,不断循环迭代,各个节点到源节点的最短路线和距离,更新距离map里。当循环遍历到目标节点时,即可求出,源节点到目标节点的最短路线和距离。

更多说明,可以看代码注释。

算法思想

求最短路径步骤 [1] 

算法步骤如下: [1] 

G={V,E}

1. 初始时令 S={V0},T=V-S={其余顶点},T中顶点对应的距离值 [1] 

若存在,d(V0,Vi)为弧上的权值 [1] 

若不存在,d(V0,Vi)为∞ [2] 

2. 从T中选取一个与S中顶点有关联边且权值最小的顶点W,加入到S中 [1] 

3. 对其余T中顶点的距离值进行修改:若加进W作中间顶点,从V0到Vi的距离值缩短,则修改此距离值 [1] 

重复上述步骤2、3,直到S [1]  中包含所有顶点,即W=Vi为止 [1] 

代码示例

import com.gis.spacedata.domain.entity.tunnel.TunnelTopologyRelEntity;
import lombok.extern.slf4j.Slf4j;
import java.util.*;
@Slf4j
public class PathUtil {
    /**
     * 方法描述: 求最短路径
     *
     */
    public static List<Long> dijkstra(List<TunnelTopologyRelEntity> topologies, long start, long end) {
        int size=topologies.size();
        Map<String, Double> distMap = new HashMap<>(size);
        //存放源节点到各个节点的距离key 目标节点,value 源节点到该节点的距离
        Map<Long, Double> dists = new HashMap<>(size);
        //key: 当前节点,value:从原点到达key的最短路径的前驱(上一个)节点
        Map<Long, Long> parent = new HashMap<>(size);
        //被标记最短距离的节点
        Set<Long> markNodes = new HashSet<>(size);
        //获取所有节点列表
        Set<Long> nodes = new HashSet<>(10);
        for (TunnelTopologyRelEntity e : topologies) {
            nodes.add(e.getSource());
            nodes.add(e.getTarget());
            distMap.put(e.getSource() + "-" + e.getTarget(), e.getCost());
        }
        //初始化各个节点到源节点的距离
        for (long node : nodes) {
            if (node == start) {
                dists.put(node, 0d);
            } else {
                dists.put(node, getCost(distMap, start, node));
            }
        }
        // 不断迭代
        while (true) {
            //距离源节点距离最近的节点(还未被标记为离源节点最近的点)
            long closestNode = -1;
            double min = Double.MAX_VALUE;
            for (Map.Entry<Long, Double> entry : dists.entrySet()) {
                if (entry.getValue() < min && !markNodes.contains(entry.getKey())) {
                    min = entry.getValue();
                    closestNode = entry.getKey();
                }
            }
            // 找不到可达的路径了或到达目标点
            if (closestNode == -1 || closestNode==end) {
                break;
            }
            markNodes.add(closestNode);
            for (long node : nodes) {
                double dist = getCost(distMap, closestNode, node);
                // 找到一个为扩展的子节点
                if (dist > 0 && !markNodes.contains(node)) {
                    double new_dist = dists.get(closestNode) + dist;
                    // 新距离小于原始距离,更新
                    if (new_dist < dists.get(node)) {
                        dists.put(node, new_dist);
                        parent.put(node, closestNode);
                    }
                }
            }
        }
        // 倒叙查找到路径
        if (dists.get(end) == Integer.MAX_VALUE) {
            log.info(start + "到" + end + "之间没有最短路径");
            return null;
        } else {
            List<Long> path = new ArrayList<>();
            long current = end;
            path.add(current);
            while (current != start) {
                current = parent.get(current);
                path.add(current);
            }
            //反转
            Collections.reverse(path);
            return path;
        }
    }
    /**
     * 方法描述: 获取相邻节点之间距离
     *
     */
    private static double getCost(Map<String, Double> distMap, long start, long end) {
        if (start == end) {
            return 0;
        }
        Double dist1 = distMap.get(start + "-" + end);
        if (dist1 != null) {
            return dist1;
        }
        Double dist2 = distMap.get(end + "-" + start);
        if (dist2 != null) {
            return dist2;
        }
        return Double.MAX_VALUE;
    }
}

image.gif

实际业务代码中应用:

public List<Long> getPointShortWay(String startCode, String endCode) {
        TunnelTopologyCodeRelEntity startTopologyCodeRel = getTopologyCodeRel(startCode);
        TunnelTopologyCodeRelEntity endTopologyCodeRel = getTopologyCodeRel(endCode);
        if (Func.isNull(startTopologyCodeRel) || Func.isNull(endTopologyCodeRel)) {
            return Collections.emptyList();
        }
        List<TunnelTopologyRelEntity> list=list();
        return PathUtil.dijkstra(list,startTopologyCodeRel.getId(), endTopologyCodeRel.getId());
    }

image.gif

相关文章
|
1月前
|
负载均衡 NoSQL 算法
一天五道Java面试题----第十天(简述Redis事务实现--------->负载均衡算法、类型)
这篇文章是关于Java面试中Redis相关问题的笔记,包括Redis事务实现、集群方案、主从复制原理、CAP和BASE理论以及负载均衡算法和类型。
一天五道Java面试题----第十天(简述Redis事务实现--------->负载均衡算法、类型)
|
1月前
|
搜索推荐 算法 Java
手写快排:教你用Java写出高效排序算法!
快速排序(QuickSort)是经典的排序算法之一,基于分治思想,平均时间复杂度为O(n log n),广泛应用于各种场合。在这篇文章中,我们将手写一个Java版本的快速排序,从基础实现到优化策略,并逐步解析代码背后的逻辑。
44 1
|
22天前
|
设计模式 缓存 算法
揭秘策略模式:如何用Java设计模式轻松切换算法?
【8月更文挑战第30天】设计模式是解决软件开发中特定问题的可重用方案。其中,策略模式是一种常用的行为型模式,允许在运行时选择算法行为。它通过定义一系列可互换的算法来封装具体的实现,使算法的变化与客户端分离。例如,在电商系统中,可以通过定义 `DiscountStrategy` 接口和多种折扣策略类(如 `FidelityDiscount`、`BulkDiscount` 和 `NoDiscount`),在运行时动态切换不同的折扣逻辑。这样,`ShoppingCart` 类无需关心具体折扣计算细节,只需设置不同的策略即可实现灵活的价格计算,符合开闭原则并提高代码的可维护性和扩展性。
37 2
|
30天前
|
安全 算法 Java
java系列之~~网络通信安全 非对称加密算法的介绍说明
这篇文章介绍了非对称加密算法,包括其定义、加密解密过程、数字签名功能,以及与对称加密算法的比较,并解释了非对称加密在网络安全中的应用,特别是在公钥基础设施和信任网络中的重要性。
|
1月前
|
机器学习/深度学习 算法 Java
算法设计(动态规划应用实验报告)实现基于贪婪技术思想的Prim算法、Dijkstra算法
这篇文章介绍了基于贪婪技术思想的Prim算法和Dijkstra算法,包括它们的伪代码描述、Java源代码实现、时间效率分析,并展示了算法的测试用例结果,使读者对贪婪技术及其应用有了更深入的理解。
算法设计(动态规划应用实验报告)实现基于贪婪技术思想的Prim算法、Dijkstra算法
|
1月前
|
自然语言处理 算法
HanLP — HMM隐马尔可夫模型 - 路径规划算法 - 求解最短路径 - 维特比(Viterbi)算法
HanLP — HMM隐马尔可夫模型 - 路径规划算法 - 求解最短路径 - 维特比(Viterbi)算法
37 0
HanLP — HMM隐马尔可夫模型 - 路径规划算法 - 求解最短路径 - 维特比(Viterbi)算法
|
1月前
|
搜索推荐 算法 Java
经典排序算法之-----选择排序(Java实现)
这篇文章通过Java代码示例详细解释了选择排序算法的实现过程,包括算法的基本思想、核心代码、辅助函数以及测试结果,展示了如何通过选择排序对数组进行升序排列。
经典排序算法之-----选择排序(Java实现)
|
1月前
|
搜索推荐 算法 Java
|
1月前
|
存储 算法 Java
LeetCode经典算法题:打家劫舍java详解
LeetCode经典算法题:打家劫舍java详解
46 2
|
30天前
|
数据采集 搜索推荐 算法
【高手进阶】Java排序算法:从零到精通——揭秘冒泡、快速、归并排序的原理与实战应用,让你的代码效率飙升!
【8月更文挑战第21天】Java排序算法是编程基础的重要部分,在算法设计与分析及实际开发中不可或缺。本文介绍内部排序算法,包括简单的冒泡排序及其逐步优化至高效的快速排序和稳定的归并排序,并提供了每种算法的Java实现示例。此外,还探讨了排序算法在电子商务、搜索引擎和数据分析等领域的广泛应用,帮助读者更好地理解和应用这些算法。
21 0