Java代码利用朴素贝叶斯分类算法实现信息分类

简介: Java代码利用朴素贝叶斯分类算法实现信息分类

贝叶斯分类算法

贝叶斯分类算法是统计学的一种分类方法,它是一类利用概率统计知识进行分类的算法。在许多场合,朴素贝叶斯(Naïve Bayes,NB)分类算法可以与决策树和神经网络分类算法相媲美,该算法能运用到大型数据库中,而且方法简单、分类准确率高、速度快。

由于贝叶斯定理假设一个属性值对给定类的影响独立于其它属性的值,而此假设在实际情况中经常是不成立的,因此其分类准确率可能会下降。为此,就衍生出许多降低独立性假设的贝叶斯分类算法,如TAN(tree augmented Bayes network)算法。

那么既然是朴素贝叶斯分类算法,它的核心算法又是什么呢?

是下面这个贝叶斯公式:


换个表达形式就会明朗很多,如下:



我们最终求的p(类别|特征)即可!就相当于完成了我们的任务。

代码实例

下面以女生找对象举例,提取除女生找对象的几个关键特征,比如颜值,性格,身高,上进心,资产情况为择偶特征,通过事先调研等手段,获取一部分数据样本,即各类特征以及择偶结果(分类)数据集。根据数据集利用朴素贝叶斯函数计算出个各个特征集合在该分类下的值,结果值最大的分类,认为该数据属于这个分类。由于这个是利用概率学去计算得出的,不一定十分准确,数据集样本数据越大,准确率就越高。

数据集data.txt

下面数据集每行代码一条样本数据,每条数据中的具体特征用逗号“,” 分割,特征顺寻依次为

颜值,性格,身高,上进心,资产情况,女生中意结果

帅,好,高,上进,有钱,中意
不帅,好,高,上进,有钱,中意
帅,不好,高,上进,有钱,中意
帅,好,不高,上进,有钱,中意
帅,好,高,不上进,有钱,中意
帅,好,高,上进,不有钱,中意
帅,好,不高,不上进,有钱,不中意
不帅,不好,不高,上进,有钱,中意
不帅,不好,不高,上进,不有钱,不中意
帅,好,不高,上进,不有钱,中意
不帅,好,高,不上进,有钱,不中意
帅,不好,高,上进,有钱,不中意
不帅,好,高,上进,有钱,不中意
帅,不好,高,上进,不有钱,中意
帅,不好,高,不上进,有钱,中意
帅,好,高,上进,不有钱,不中意
帅,不好,不高,不上进,不有钱,不中意
不帅,不好,不高,不上进,不有钱,不中意
帅,好,不高,上进,有钱,中意
不帅,不好,不高,不上进,有钱,不中意
帅,好,高,上进,不有钱,中意
帅,好,不高,不上进,有钱,中意
帅,好,高,不上进,不有钱,不中意
帅,不好,高,不上进,有钱,不中意

代码实现

import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.*;
import java.util.stream.Collectors;
/**
 * @author liuya
 */
public class NaiveBayesModel {
    //样本数据
    private static List<List<String>> data = new ArrayList<>();
    //样本数据
    private static Set<List<String>> dataSet = new HashSet<>();
    //分类模型
    public static Map<String,String> modelMap = new HashMap<>();
    //样本数据集
    private static String path = "./src/data.txt";
    public static void main(String[] args) {
        //训练模型
        trainingModel();
        //识别
        classification("帅","不好","不高","上进","有钱");
        classification("不帅","不好","不高","不上进","不有钱");
    }
    /**
     * 导入数据
     * @param path
     * @return
     */
    public static void readData(String path){
        List<String> row = null;
        try {
            InputStreamReader isr = new InputStreamReader(new FileInputStream(new File(path)));
            BufferedReader br = new BufferedReader(isr);
            String str = null;
            while((str = br.readLine()) != null){
                row = new ArrayList<>();
                String[] str1 = str.split(",");
                for(int i = 0; i < str1.length ; i++) {
                    row.add(str1[i]);
                }
                dataSet.add(row);
                data.add(row);
            }
            br.close();
            isr.close();
        } catch (Exception e) {
            e.printStackTrace();
            System.out.println("读取文件内容出错!");
        }
    }
    public static void trainingModel() {
        readData(path);
        String category1="中意";
        String category2="不中意";
        dataSet.forEach(e->{
          double categoryP1=  calculateBayesian(e.get(0),e.get(1),e.get(2),e.get(3),e.get(4),category1);
          double categoryP2=  calculateBayesian(e.get(0),e.get(1),e.get(2),e.get(3),e.get(4),category2);
            String result=categoryP1>categoryP2?category1:category2;
            modelMap.put(e.get(0)+"-"+e.get(1)+"-"+e.get(2)+"-"+e.get(3)+"-"+e.get(4),result);
        });
    }
    /**
     * 分类的识别
     * */
    public static void  classification(String look, String character, String height, String progresses, String wealthy){
        String key=look+"-"+character+"-"+height+"-"+progresses+"-"+wealthy;
        String result=modelMap.getOrDefault(key,"未知");
        System.out.println("特征为"+look+","+character+","+height+","+progresses+","+wealthy+"的对象,女生"+result);
    }
    /**
     * 分类的核心是比较朴素贝叶斯的结果值,结果值大的认为就属于该分类(会有误差,数据集量越大,结果判定的准确率就会越高)由于分母相同可以直接比较分子来确定分类
     * */
    public static double calculateBayesian(String look, String character, String height, String progresses, String wealthy,String category) {
        //获取P(x|y)的分母
      //  double denominator = getDenominator(look,character,height,progresses,wealthy);
        //获取P(x|y)的分子
        double molecule = getMolecule(look,character,height,progresses,wealthy,category);
        return molecule/1;
    }
    /**
     * 获取p(x|y)分子
     * @return
     */
    public static double getMolecule(String look, String character, String height, String progresses, String wealthy,String category) {
        double resultCP = getProbability(5, category);
        double lookCP = getProbability(0, look, category);
        double characterCP = getProbability(1, character, category);
        double heightCP = getProbability(2, height, category);
        double progressesCP = getProbability(3, progresses, category);
        double wealthyCP = getProbability(4, wealthy, category);
        return lookCP * characterCP * heightCP * progressesCP * wealthyCP * resultCP;
    }
    /**
     * 获取p(x|y)分母
     * @return
     */
    public static double getDenominator(String look, String character, String height, String progresses, String wealthy) {
        double lookP = getProbability(0, look);
        double characterP = getProbability(1, character);
        double heightP = getProbability(2, height);
        double progressesP = getProbability(3, progresses);
        double wealthyP = getProbability(4, wealthy);
        return lookP * characterP * heightP * progressesP * wealthyP;
    }
    /**
     * 获取某特征的概率
     * @return
     */
    private static double getProbability(int index, String feature) {
        int size = data.size();
        int num = 0;
        for (int i = 0; i < size; i++) {
            if (data.get(i).get(index).equals(feature)) {
                num++;
            }
        }
        return (double) num / size;
    }
    /**
     * 获取某类别下某特征的概率
     * @return
     */
    private static double getProbability(int index, String feature, String category) {
        List<List<String>> filterData=data.stream().filter(e -> e.get(e.size() - 1).equals(category)).collect(Collectors.toList());
        int size =filterData.size();
        int num = 0;
        for (int i = 0; i < size; i++) {
            if (data.get(i).get(index).equals(feature)) {
                num++;
            }
        }
        return (double) num / size;
    }
}

注意:样本数据要足够多,至少每个类别下的特征组合都要有,不然就会出现未知的情况。

输出结果

使用场景

   比如网站垃圾信息分类,文章自动分类,网站垃圾邮件分类,文件分类等。

以反垃圾啊邮件为例说明分类算法的使用,先将批量已经分类的邮件样本(如5000封正常的邮件,2000封垃圾邮件),输入分类算法进行训练,得到一个垃圾邮件分类模型,然后利用分类算法结合分类模型对待处理邮件进行分类识别。

    根据已经分类的样本信息提取出一组特征信息的概率,比如邮件中“信用卡”这个词出现在垃圾邮件的中的概率为20%,在非垃圾邮件的概率为1%,就得到一个分类模型。然后从待识别处理的邮件中提取特征值,结合分类模型,就可以判断其分类是不是垃圾邮件。由于贝叶斯算法得到的分类判断是概率值,所以可能会出现误判。


相关文章
|
2天前
|
设计模式 Java
Java设计模式:组合模式的介绍及代码演示
组合模式是一种结构型设计模式,用于将多个对象组织成树形结构,并统一处理所有对象。例如,统计公司总人数时,可先统计各部门人数再求和。该模式包括一个通用接口、表示节点的类及其实现类。通过树形结构和节点的通用方法,组合模式使程序更易扩展和维护。
Java设计模式:组合模式的介绍及代码演示
|
2天前
|
Java 程序员 API
Java中的Lambda表达式:简化代码的秘密武器
在Java 8中引入的Lambda表达式是一种强大的编程工具,它可以显著简化代码,提高可读性。本文将介绍Lambda表达式的基本概念、优势以及在实际开发中的应用。通过具体示例,您将了解如何使用Lambda表达式来简化集合操作、线程编程和函数式编程。让我们一起探索这一革命性的特性,看看它是如何改变Java编程方式的。
15 4
|
2天前
|
Java 开发者
探索Java中的Lambda表达式:简化你的代码
【8月更文挑战第49天】在Java 8的发布中,Lambda表达式无疑是最令人兴奋的新特性之一。它不仅为Java开发者提供了一种更加简洁、灵活的编程方式,而且还极大地提高了代码的可读性和开发效率。本文将通过实际代码示例,展示如何利用Lambda表达式优化和重构Java代码,让你的编程之旅更加轻松愉快。
|
7天前
|
SQL JavaScript 前端开发
基于Java访问Hive的JUnit5测试代码实现
根据《用Java、Python来开发Hive应用》一文,建立了使用Java、来开发Hive应用的方法,产生的代码如下
28 6
|
5天前
|
Java 开发者
探索Java中的Lambda表达式:简化代码,提升效率
【9月更文挑战第14天】本文旨在揭示Java 8中引入的Lambda表达式如何革新了我们编写和管理代码的方式。通过简洁明了的语言和直观的代码示例,我们将一起走进Lambda表达式的世界,了解其基本概念、语法结构以及在实际编程中的应用。文章不仅会展示Lambda表达式的魅力所在,还会指导读者如何在日常工作中有效利用这一特性,以提高编码效率和程序可读性。
|
15天前
|
算法 BI Serverless
基于鱼群算法的散热片形状优化matlab仿真
本研究利用浴盆曲线模拟空隙外形,并通过鱼群算法(FSA)优化浴盆曲线参数,以获得最佳孔隙度值及对应的R值。FSA通过模拟鱼群的聚群、避障和觅食行为,实现高效全局搜索。具体步骤包括初始化鱼群、计算适应度值、更新位置及判断终止条件。最终确定散热片的最佳形状参数。仿真结果显示该方法能显著提高优化效率。相关代码使用MATLAB 2022a实现。
|
15天前
|
算法 数据可视化
基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真
奇异谱分析(SSA)是一种基于奇异值分解(SVD)和轨迹矩阵的非线性、非参数时间序列分析方法,适用于提取趋势、周期性和噪声成分。本项目使用MATLAB 2022a版本实现从强干扰序列中提取趋势线,并通过可视化展示了原时间序列与提取的趋势分量。代码实现了滑动窗口下的奇异值分解和分组重构,适用于非线性和非平稳时间序列分析。此方法在气候变化、金融市场和生物医学信号处理等领域有广泛应用。
|
1月前
|
算法
基于模糊控制算法的倒立摆控制系统matlab仿真
本项目构建了一个基于模糊控制算法的倒立摆控制系统,利用MATLAB 2022a实现了从不稳定到稳定状态的转变,并输出了相应的动画和收敛过程。模糊控制器通过对小车位置与摆的角度误差及其变化量进行模糊化处理,依据预设的模糊规则库进行模糊推理并最终去模糊化为精确的控制量,成功地使倒立摆维持在直立位置。该方法无需精确数学模型,适用于处理系统的非线性和不确定性。
基于模糊控制算法的倒立摆控制系统matlab仿真
|
16天前
|
资源调度 算法
基于迭代扩展卡尔曼滤波算法的倒立摆控制系统matlab仿真
本课题研究基于迭代扩展卡尔曼滤波算法的倒立摆控制系统,并对比UKF、EKF、迭代UKF和迭代EKF的控制效果。倒立摆作为典型的非线性系统,适用于评估不同滤波方法的性能。UKF采用无迹变换逼近非线性函数,避免了EKF中的截断误差;EKF则通过泰勒级数展开近似非线性函数;迭代EKF和迭代UKF通过多次迭代提高状态估计精度。系统使用MATLAB 2022a进行仿真和分析,结果显示UKF和迭代UKF在非线性强的系统中表现更佳,但计算复杂度较高;EKF和迭代EKF则更适合维数较高或计算受限的场景。
|
17天前
|
算法
基于SIR模型的疫情发展趋势预测算法matlab仿真
该程序基于SIR模型预测疫情发展趋势,通过MATLAB 2022a版实现病例增长拟合分析,比较疫情防控力度。使用SIR微分方程模型拟合疫情发展过程,优化参数并求解微分方程组以预测易感者(S)、感染者(I)和移除者(R)的数量变化。![]该模型将总人群分为S、I、R三部分,通过解析或数值求解微分方程组预测疫情趋势。