比Hive快279倍的数据库-ClickHouse到底是怎样的

本文涉及的产品
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
简介: 比Hive快279倍的数据库-ClickHouse到底是怎样的

1.什么是ClickHouse



ClickHouse是一个面向列的数据库管理系统(DBMS),用于在线分析处理查询(OLAP)。

在“传统”面向行的DBMS中,数据按以下顺序存储:

906adc5f6765a494c962ae19711180a6.png换句话说,与行相关的所有值都物理地存储在彼此旁边。
面向行的DBMS的示例是MySQL,Postgres和MS SQL Server。
在面向列的DBMS中,数据存储如下:

817a365ed32b5243d3c57bef0d88d645.png这些示例仅显示数据的排列顺序。不同列的值分别存储,同一列的数据存储在一起。

面向列的DBMS的示例:Vertica,Paraccel(Actian Matrix和Amazon Redshift),Sybase IQ,Exasol,Infobright,InfiniDB,MonetDB(VectorWise和Actian Vector),LucidDB,SAP HANA,Google Dremel,Google PowerDrill,Druid和KDB +。

存储数据的不同顺序更适合于不同的场景。数据访问场景是指进行了哪些查询,多长时间以及以何种比例进行查询;为每种类型的查询读取多少数据 - 行,列和字节;读取和更新数据之间的关系;数据大小以及如何使用本地数据;transactions是否被使用,以及它们是否隔离;数据replication和逻辑完整性的要求;每种类型的查询的延迟和吞吐量要求,等等。

系统负载越高,定制系统设置以匹配使用方案的要求就越重要,并且此定制变得越精细。没有一个系统同样适用于明显不同的场景。如果系统适应各种场景,在高负载下,系统将同样处理所有场景,或者仅适用于一种或几种可能的场景。


2.OLAP场景的关键属性


  • 绝大多数请求都是读访问权限。
  • 数据以相当大的批次(> 1000行)更新,而不是单行更新;或者它根本没有更新。
  • 数据已添加到数据库,但未进行修改。
  • 对于读取,从DB中提取了相当多的行,但只提取了一小部分列。
  • 表格“宽”,意味着它们包含大量列。
  • 查询相对较少(通常每台服务器数百个查询或每秒更少)。
  • 对于简单查询,允许延迟大约50毫秒。
  • 列值相当小:数字和短字符串(例如,每个URL 60个字节)。
  • 处理单个查询时需要高吞吐量(每个服务器每秒最多数十亿行)。
  • Transactions不是必需的。
  • 对数据一致性要求低。
  • 每个查询有一个大表。所有表都很小,除了一个。
  • 查询结果明显小于源数据。换句话说,数据被过滤或聚合,因此结果适合单个服务器的RAM。

很容易看出OLAP场景与其他流行场景(例如OLTP或键值访问)非常不同。 因此,如果希望获得不错的性能,尝试使用OLTP或键值DB来处理分析查询是没有意义的。 例如,如果尝试使用MongoDB或Redis进行分析,则与OLAP数据库相比,性能会非常差。

3.为什么面向列的数据库在OLAP场景中更好地工作


面向列的数据库更适合OLAP场景:它们在处理大多数查询时至少快100倍。 原因在下面详细解释,但事实更容易在视觉上展示:

面向行的DBMS

e5f440cabecd2569e4d0b1854be64149.jpg

面向列的DBMS

看到不同?
8eb6b7920167ad5d91dccfae90658d1a.jpg
输入/输出

  • 对于分析查询,只需要读取少量表列。 在面向列的数据库中,只能读取所需的数据。 例如,如果需要100列中的5列,则可以预期I / O减少20倍。
  • 由于数据以数据包形式读取,因此更容易压缩。 列中的数据也更容易压缩。 这进一步减少了I / O量。
  • 由于I / O减少,更多数据适合系统缓存。

例如,查询“计算每个广告平台的记录数”需要读取一个“广告平台ID”列,其占用未压缩的1个字节。 如果大多数流量不是来自广告平台,则可以预期此列的压缩率至少为10倍。 当使用快速压缩算法时,数据解压缩可以每秒至少几千兆字节的未压缩数据的速度进行。 换句话说,可以在单个服务器上以每秒大约几十亿行的速度处理该查询。 这种速度实际上是在实践中实现的。

例子:

$ clickhouse-client
ClickHouse client version 0.0.52053.
Connecting to localhost:9000.
Connected to ClickHouse server version 0.0.52053.
:) SELECT CounterID, count() FROM hits GROUP BY CounterID ORDER BY count() DESC LIMIT 20
SELECT
CounterID,
count()
FROM hits
GROUP BY CounterID
ORDER BY count() DESC
LIMIT 20
┌─CounterID─┬──count()─┐
│    114208 │ 56057344 │
│    115080 │ 51619590 │
│      3228 │ 44658301 │
│     38230 │ 42045932 │
│    145263 │ 42042158 │
│     91244 │ 38297270 │
│    154139 │ 26647572 │
│    150748 │ 24112755 │
│    242232 │ 21302571 │
│    338158 │ 13507087 │
│     62180 │ 12229491 │
│     82264 │ 12187441 │
│    232261 │ 12148031 │
│    146272 │ 11438516 │
│    168777 │ 11403636 │
│   4120072 │ 11227824 │
│  10938808 │ 10519739 │
│     74088 │  9047015 │
│    115079 │  8837972 │
│    337234 │  8205961 │
└───────────┴──────────┘
20 rows in set. Elapsed: 0.153 sec. Processed 1.00 billion rows, 4.00 GB (6.53 billion rows/s., 26.10 GB/s.)
:)

CPU
由于执行查询需要处理大量行,因此有助于为整个向量而不是单独的行调度所有操作,或者实现查询引擎以便几乎不需要调度成本。如果不这样做,使用任何half-decent的磁盘子系统,查询解释器将不可避免地停止CPU。将数据存储在列中并在可能的情况下按列处理它是有意义的。

有两种方法可以做到这一点:

向量引擎:所有操作都是为向量而不是为单独的值编写的。这意味着不需要经常调用操作,并且调度成本可以忽略不计。操作代码包含优化的内部循环。

代码生成:为查询生成的代码中包含所有间接调用。

这不是在“传统”数据库中完成的,因为在运行简单查询时没有意义。但是,也有例外。例如,MemSQL使用代码生成来减少处理SQL查询时的延迟。 (为了进行比较,分析DBMS需要优化吞吐量,而不是延迟。)

请注意,对于CPU效率,查询语言必须是声明性的(SQL或MDX),或者至少是向量(J,K)。查询应该只包含隐式循环,允许优化。

目录
相关文章
|
3月前
|
存储 关系型数据库 MySQL
一个项目用5款数据库?MySQL、PostgreSQL、ClickHouse、MongoDB区别,适用场景
一个项目用5款数据库?MySQL、PostgreSQL、ClickHouse、MongoDB——特点、性能、扩展性、安全性、适用场景比较
|
16天前
|
SQL Unix OLAP
ClickHouse安装教程:开启你的列式数据库之旅
ClickHouse 是一个高性能的列式数据库管理系统,适用于在线分析处理(OLAP)。本文介绍了 ClickHouse 的基本使用步骤,包括下载二进制文件、安装应用、启动服务器和客户端、创建表、插入数据以及查询新表。还提到了图形客户端 DBeaver 的使用,使操作更加直观。通过这些步骤,用户可以快速上手并利用 ClickHouse 的强大性能进行数据分析。
61 4
|
3月前
|
存储 分布式计算 数据库
阿里云国际版设置数据库云分析工作负载的 ClickHouse 版
阿里云国际版设置数据库云分析工作负载的 ClickHouse 版
|
4月前
|
存储 SQL 缓存
数据库测试|Elasticsearch和ClickHouse的对决
由于目前市场上主流的数据库有许多,这次我们选择其中一个比较典型的Elasticsearch来和ClickHouse做一次实战测试,让大家更直观地看到真实的比对数据,从而对这两个数据库有更深入的了解,也就能理解为什么我们会选择ClickHouse。
数据库测试|Elasticsearch和ClickHouse的对决
|
3月前
|
存储 关系型数据库 MySQL
四种数据库对比MySQL、PostgreSQL、ClickHouse、MongoDB——特点、性能、扩展性、安全性、适用场景
四种数据库对比 MySQL、PostgreSQL、ClickHouse、MongoDB——特点、性能、扩展性、安全性、适用场景
|
6月前
|
SQL NoSQL 数据库
Flutter Hive NoSql 数据库使用指南
本文将会写一个 Hive CURD 的例子,详细介绍 Hive 这个轻量级的 Flutter 离线数据库的使用方法,包括 Hive 在 Flutter 开发中的重要性、Hive 与 SQLite 的比较等,帮助开发者快速上手 Hive 数据库。
Flutter Hive NoSql 数据库使用指南
|
6月前
|
存储 大数据 关系型数据库
从 ClickHouse 到阿里云数据库 SelectDB 内核 Apache Doris:快成物流的数智化货运应用实践
目前已经部署在 2 套生产集群,存储数据总量达百亿规模,覆盖实时数仓、BI 多维分析、用户画像、货运轨迹信息系统等业务场景。
|
14天前
|
存储 Oracle 关系型数据库
数据库传奇:MySQL创世之父的两千金My、Maria
《数据库传奇:MySQL创世之父的两千金My、Maria》介绍了MySQL的发展历程及其分支MariaDB。MySQL由Michael Widenius等人于1994年创建,现归Oracle所有,广泛应用于阿里巴巴、腾讯等企业。2009年,Widenius因担心Oracle收购影响MySQL的开源性,创建了MariaDB,提供额外功能和改进。维基百科、Google等已逐步替换为MariaDB,以确保更好的性能和社区支持。掌握MariaDB作为备用方案,对未来发展至关重要。
39 3
|
14天前
|
安全 关系型数据库 MySQL
MySQL崩溃保险箱:探秘Redo/Undo日志确保数据库安全无忧!
《MySQL崩溃保险箱:探秘Redo/Undo日志确保数据库安全无忧!》介绍了MySQL中的三种关键日志:二进制日志(Binary Log)、重做日志(Redo Log)和撤销日志(Undo Log)。这些日志确保了数据库的ACID特性,即原子性、一致性、隔离性和持久性。Redo Log记录数据页的物理修改,保证事务持久性;Undo Log记录事务的逆操作,支持回滚和多版本并发控制(MVCC)。文章还详细对比了InnoDB和MyISAM存储引擎在事务支持、锁定机制、并发性等方面的差异,强调了InnoDB在高并发和事务处理中的优势。通过这些机制,MySQL能够在事务执行、崩溃和恢复过程中保持
42 3
|
14天前
|
SQL 关系型数据库 MySQL
数据库灾难应对:MySQL误删除数据的救赎之道,技巧get起来!之binlog
《数据库灾难应对:MySQL误删除数据的救赎之道,技巧get起来!之binlog》介绍了如何利用MySQL的二进制日志(Binlog)恢复误删除的数据。主要内容包括: 1. **启用二进制日志**:在`my.cnf`中配置`log-bin`并重启MySQL服务。 2. **查看二进制日志文件**:使用`SHOW VARIABLES LIKE 'log_%';`和`SHOW MASTER STATUS;`命令获取当前日志文件及位置。 3. **创建数据备份**:确保在恢复前已有备份,以防意外。 4. **导出二进制日志为SQL语句**:使用`mysqlbinlog`
54 2