m基于OFDM系统,对比SC算法,Minn算法,PARK算法同步性能matlab仿真分析

简介: m基于OFDM系统,对比SC算法,Minn算法,PARK算法同步性能matlab仿真分析

1.算法描述

    OFDM系统下对比SC算法,Minn算法,PARK算法同步性能matlab仿真分析。OFDM系统中的定时估计和频率频率算法——时频联合估计的SC算法,由Schmidl和Cox提出,是一种基于训练序列的符号同步和载波频率同步的联合估计算法。

   为了消除Schmidl算法出现的平顶影响,minn等人改变了训练队列的结构,并重新设计了一种新的同步度量函数,虽然成功消除了schmidl算法的平顶效应,使得同步自相关峰变得尖锐,提高了定时同步估计的精度和可靠性,但是该向相关峰还不够尖锐,而且在同步度量函数曲线主峰两边出现了多个副峰,在信道环境恶劣的条件下,也即低信噪比条件下,定时同步估计将受到较大的影响。

  为了进一步解决minn算法存在的不足,park等人在分析了schmidl算法和minn算法定时效果不佳的原因后,重新设计了新的前导训练序列的结构,并给出了新的定时同步度量函数,该算法的定时度量函数曲线出现了一个更为尖锐的自相关峰,很明显该算法消除了schmidl算法中由于循环前缀的存在而导致的平顶效应,同时得到了比minn算法更为尖锐的自相关峰,提高了定时的精度和确定性,但是在噪声干扰较大的情况下,该算法还是会出现较大的定时同步估计误差,其同步估计的稳定性依然较差。

SC算法

1.png

首先要考虑同步序列的结构,如下所示。

2.png

该算法中既可以进行定时同步,也可以进行频率同步,频率同步又可以分为小数倍频偏和整数倍频偏,我在的项目里也叫精频偏估计和粗频偏估计。其中,定时同步和小数倍频偏估计用第一个训练序列也就是上图中的AA来完成,整数倍频偏则两个训练序列都会用到。

Minn算法

3.png

所求得的d对应的是训练序列(不包含循环前缀)的开始位置。

PARK算法

训练序列结构 T=[CC DD C∗C∗ D∗D∗],其中C表示由长度为N/4的复伪随机序列PN,ifft变换得到的符号序列C(n)=D(N/4−n)

4.png

实际在算法实现上
P(d)=∑N/2−1m=0r(d−1−m)r(d+m)P(d)=∑m=0N/2−1r(d−1−m)r(d+m)
这是因为序列个数通常是偶数而非奇数,不会出现r(d)r(d)r(d)r(d)的情况。
所求得的d对应的是训练序列(不包含循环前缀)的中间位置。

2.仿真效果预览
matlab2022a仿真结果如下:

5.png
6.png
7.png
8.png
9.png
10.png
11.png
12.png
13.png
14.png

3.MATLAB部分代码预览

QAMTable=[7+7i,-7+7i,-7-7i,7-7i]; 
buf=QAMTable(randint(N/2,1,4)+1); %加1是为了下标可能是0不合法
 
%产生train 
pn = rand(1,N/2)>0.5; 
pn = reshape(pn,N/4,2); 
[ich,qch]=qpskmod(pn,N/4,1,2); 
kmod=sqrt(2); 
x=ich*kmod+qch*kmod*i; 
y=ifft(x); 
y=reshape(y,N/4,1); 
train=[y;y(N/4:-1:1,1);conj(y);conj(y(N/4:-1:1,1))]; 
 
%*****************添加一个空符号以及一个后缀符号************* 
src = QAMTable(randint(N,1,4)+1).'; 
sym = ifft(src); 
sig =[zeros(N,1) train train sym]; 
 
%**********************添加循环前缀************************* 
tx =[sig(N - Ng +1:N,:);sig]; 
 
%***********************经过信道*************************** 
recv = reshape(tx,1,size(tx,1)*size(tx,2)); %size的1表示行,2表示列,从%前向后数,超过了为1
recv1 = awgn(recv,10,'measured'); 
recv2 = [zeros(1,100),recv1(1:end-100)]; 
recv  = recv1 + 0.8*recv2;
%*****************计算符号定时***************************** 
P=zeros(1,2*Ns); 
R=zeros(1,2*Ns); 
P2=zeros(1,2*Ns); 
R2=zeros(1,2*Ns);  
for d = Ns/2+1:1:2*Ns + Ns/2
    for m=1:N/2  
        P(d-Ns/2) = P(d-Ns/2) + (recv(d+m))*recv(d-1-m);  
        R(d-Ns/2) = R(d-Ns/2) + power(abs(recv(d+m)),2); 
    end 
end 
M= power(abs(P),2)./power(abs(R),2); 
[a b]=max(M);
b=b-N/2;
%取第一个峰值
Level = a/3;
Ind   = [];
for i=1:length(M)
    if M(i) > Level
       Ind = [Ind,i];
    end
end
M(Ind(2:end)) = 0;
M2(:,iii) = M;
end
MM = mean(M2,2);
%**********************绘图****************************** 
figure('Color','w'); 
d=1:1:400; 
plot(d,MM(d+N/2)); 
grid on; 
axis([0,400,0,1.1]); 
title('Park 算法'); 
xlabel('时间(采样)'); 
ylabel('定是度量曲线'); 
01_071_m
相关文章
|
2天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
2天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
1天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
2天前
|
算法 数据安全/隐私保护 索引
索引OFDM调制解调系统的matlab性能仿真
本文对m索引OFDM调制解调系统性能进行了仿真分析,增加了仿真图并配有语音讲解视频,使用Matlab2022a完成仿真,代码无水印。研究了OFDM-IM技术,通过激活不同子载波组合传输额外信息,提高频谱效率和降低PAPR。提出了OFDM联合子块索引调制技术(OFDM-JS-IM)和OFDM全索引方法(OFDM-AIM),并通过遗传算法优化子块查找表,有效提升系统性能。提供了核心MATLAB程序示例。
22 3
|
21天前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
2月前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
14天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
22天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
23天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
24天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。