【场景削减】拉丁超立方抽样方法场景削减(Matlab代码实现)

简介: 【场景削减】拉丁超立方抽样方法场景削减(Matlab代码实现)


 

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🌈3 Matlab代码实现

🎉4 参考文献


image.gif

💥1 概述

知识回顾:

基于概率距离削减法、蒙特卡洛削减法的风光场景不确定性削减(Matlab代码实现)

基于蒙特卡诺的风、光模型出力【蒙特卡诺场景削减】(Matlab代码实现)

拉丁超立方抽样方法LHS最早是由McKay等1[5$提出,现已用于很多领域[60-63]。将LHS应用于结构可靠性分析,可提高数值模拟结构可靠性分析样本代表性,进而提高结构可靠性分析结果

精度与效率。

LH重要抽样法与蒙特卡罗重要抽样法类似,都是首先选取样本,用样本的失效频率近似母体的失效概率。将LHS取得的样本运用到重要抽样中称为LH重要抽样可靠性分析方法。当重要抽样

是简单重要抽样时简单LH重要抽样(standard importance latin hypercupe samping, Sl[LHS)的

计算公式如下。首先是在标准正态分布空间内进行拉丁超立方抽样,得到样本U。

                                        image.gif

 

拉丁超立方相较于蒙特卡洛,改进了采样策略能够做到较小采样规模中获得较高的采样精度。

📚2 运行结果

image.gif

image.gif

🌈3 Matlab代码实现

链接:https://pan.baidu.com/s/1vFINdG9OY5oeyuDFlE1FqA 

提取码:3u3c

--来自百度网盘超级会员V3的分享

🎉4 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]张巍峰,车延博,刘阳升.电力系统可靠性评估中的改进拉丁超立方抽样方法[J].电力系统自动化,2015,39(04):52-57.

[2]刘鹏. 基于改进拉丁超立方重要抽样方法的结构可靠性分析[D].暨南大学,2016.

相关文章
|
6月前
|
机器学习/深度学习 算法 数据挖掘
基于改进ISODATA算法的负荷场景曲线聚类(matlab代码)
基于改进ISODATA算法的负荷场景曲线聚类(matlab代码)
|
6月前
|
机器学习/深度学习 数据采集 监控
基于yolov2深度学习网络的车辆检测算法matlab仿真,包括白天场景和夜晚场景
基于yolov2深度学习网络的车辆检测算法matlab仿真,包括白天场景和夜晚场景
|
6月前
|
算法 机器人 vr&ar
基于双目RGB图像和图像深度信息的三维室内场景建模matlab仿真
基于双目RGB图像和图像深度信息的三维室内场景建模matlab仿真
|
机器学习/深度学习 传感器 算法
【红外图像】利用红外图像处理技术对不同制冷剂充装的制冷系统进行性能评估(Matlab代码实现)
【红外图像】利用红外图像处理技术对不同制冷剂充装的制冷系统进行性能评估(Matlab代码实现)
|
机器学习/深度学习 传感器 算法
【视频去噪】基于全变异正则化最小二乘反卷积是最标准的图像处理、视频去噪研究(Matlab代码实现)
【视频去噪】基于全变异正则化最小二乘反卷积是最标准的图像处理、视频去噪研究(Matlab代码实现)
|
机器学习/深度学习 传感器 算法
【大规模 MIMO 检测】基于ADMM的大型MU-MIMO无穷大范数检测研究(Matlab代码实现)
【大规模 MIMO 检测】基于ADMM的大型MU-MIMO无穷大范数检测研究(Matlab代码实现)
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
187 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
122 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
87 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
6月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度