【初阶数据结构】树和二叉树的基本概念和结构(下)

简介: 【初阶数据结构】树和二叉树的基本概念和结构

5.二叉树的顺序存储和链式存储

5-1二叉树的顺序存储

结论:完全二叉树很适合顺序存储,但是普通二叉树不适合顺序存储


7dd95c7970ce4a92ad8068e7b2cae188.png


843fc00e1e6e488fbffe0b291eeeb1e2.png

不难看出:完全二叉树只要按照结点层次放到数组中即可

但是普通二叉树由于有些位置的空缺,而二叉树的左右结点是有顺序的,所以会导致一部分空缺,造成空间的浪费,及不推荐。

5-2链式存储

利用二叉链表就可以解决上面普通链表不适合用顺序存储的缺点,如果左孩子不存在则为NULL

84ceeb3c89a8401cba2729a9dd94a90c.png

typedef  int  DataType;
typedef struct Btree
{
  DataType data;
  struct Btree* lchild, rchild;
}Btree;

5-3变式:三叉链表

在实际问题中,我们有时候还需要访问双亲结点,二叉链表存储则需要从根节点出发查找到双亲结点,这样显得有点麻烦,所以有的时候,为了方便我们往往还可以使用到三叉链表,也就是在二叉链表,存储左孩子和右孩子的地址的同时,额外存储结点的双亲结点。

27b72657125842ebb484b42b50c45547.png

6.二叉树的前中后序遍历


二叉树的遍历就是按照某条路径访问二叉树的每一个结点有且仅有一次,二叉树的访问范围很广:输出,查找,插入,修改,删除等,如果我们规定左右子树的访问顺序只能是先左后右,那么就只有3种访问顺序:DLR,LDR,LRD,按照根访问的时机先后,分别叫做先序遍历,中序遍历和后序遍历。

f3e54d9757604fc3b339d5ce68216c31.png

这里其实使用的是一种递归的思想:以前序遍历为例,我们规定一种规则,就是先访问他的根,再访问他的左子树和右子树,而左子树又是一棵二叉树,同样是递归访问他的左子树,再去访问他的右子树....以此类推。


这就好比是:要把所有的犯人抓住,我们规定了一种方式就是先抓住头头,然后抓完了头头的所有左翼,才能抓头头的右翼,然后抓左翼的时候,又有头头,又是抓完了头头的所有左翼,才能抓头头的右翼...


下面以下图为例,给大家写一下代码:


9c20fe4d30ad4110b44e44adfc8859b5.png

#include<stdio.h>
#include<stdlib.h>
#include<stdbool.h>
typedef struct BTNode
{
  int val;
  struct BTNode* left;
  struct BTNode* right;
}BTNode;
BTNode* CreateBTree()
{
  BTNode* n1 = (BTNode*)malloc(sizeof(BTNode));
  BTNode* n2 = (BTNode*)malloc(sizeof(BTNode));
  BTNode* n3 = (BTNode*)malloc(sizeof(BTNode));
  BTNode* n4 = (BTNode*)malloc(sizeof(BTNode));
  BTNode* n5 = (BTNode*)malloc(sizeof(BTNode));
  BTNode* n6 = (BTNode*)malloc(sizeof(BTNode));
  n1->val = 1;
  n2->val = 2;
  n3->val = 3;
  n4->val = 4;
  n5->val = 5;
  n6->val = 6;
  n1->left = n2;
  n1->right = n4;
  n2->left = n3;
  n2->right=NULL;
  n3->left = NULL;
  n3->right = NULL;
  n4->left = n5;
  n4->right = n6;
  n5->left = NULL;
  n5->right = NULL;
  n6->left = NULL;
  n6->right = NULL;
  return n1;
}
void PrevOrder(BTNode* root)
{
  if (root == NULL)
  {
    printf("NULL ");
    return;
  }
  printf("%d ", root->val);
  PrevOrder(root->left);
  PrevOrder(root->right);
}
void InOrder(BTNode* root)
{
  if (root == NULL)
  {
    printf("NULL ");
    return;
  }
  InOrder(root->left);
  printf("%d ", root->val);
  InOrder(root->right);
}
void PostOrder(BTNode* root)
{
  if (root == NULL)
  {
    printf("NULL ");
    return;
  }
  PostOrder(root->left);
  PostOrder(root->right);
  printf("%d ", root->val);
}
int main()
{
  BTNode* root = CreateBTree();
  //前序遍历
  PrevOrder(root);
  printf("\n");
  //中序遍历
  InOrder(root);
  printf("\n");
  //后序遍历
  PostOrder(root);
  return 0;
}

8cba72331c54450ebb8391c6255290e6.png


7.求二叉树总结点个数


40231268ae634c0ea0b7198281b22193.png

相信你理解了二叉树的三种常见的遍历方式,这道题不难破解,似乎就是在把打印的部分换成一个计数器计数就可以了,但是事情似乎没有你想象的那么简单,因为你或许会犯以下的小错误:(不加static是大错,加static就是有一点小毛病,static只初始化一次)

错误示范1:
int TreeSize(BTNode* root)
{
  int size = 0;//每一次递归调用都会初始化size=0;使得最终的结果为1
  if (root == NULL)
  {
    return 0;
  }
  ++size;
  TreeSize(root->left);
  TreeSize(root->right);
  return size;
}


image.png


于是聪明的你又想到了使用satic只能初始化一次,但是似乎....

  static int size = 0;//这样使得以后这个程序里所有再次调用这个TreeSize函数都不会再初始化
                        //但是这也是问题所在,直接封杀了我如果想再次调用这个函数求一下TreeSize的


int TreeSize(BTNode* root)
{
  static int size = 0;//这样使得以后这个程序里所有再次调用这个TreeSize函数都不会再初始化
                        //但是这也是问题所在,直接封杀了我如果想再次调用这个函数求一下TreeSize的想法。
  if (root == NULL)
  {
    return 0;
  }
  ++size;
  TreeSize(root->left);
  TreeSize(root->right);
  return size;
}

image.png

所以最好的方法还得是下面这种方法:

int TreeSize(BTNode* root)
{
  if (root == NULL)
  {
    return 0;
  }
  return 1 + TreeSize(root->left) + TreeSize(root->right);
}

image.png

  return 1 + TreeSize(root->left) + TreeSize(root->right);
//这里值得注意的是,因为要求二叉树的总结点,必然要遍历整个二叉树,那么遍历采用的是
//前序遍历还是中序遍历还是后序遍历都是无所谓的,所以1的位置相对于非空结点的左右子树递归都是任意的(这里其实左右子树的递归顺序也是未定义的)

8.求二叉树的叶子结点

求二叉树的叶子结点,遍历整棵二叉树是一定的,但是这次我们要计数的不是所有的结点,而是叶子结点,

image.png

到了这里,我觉得我们应该把一棵二叉树分成空结点&非空节点


或者将非空节点再细分为非叶子结点和叶子结点吗,也就是空结点,非叶子结点,叶子结点


在这题的话就是说对于空结点统计为0,叶子结点统计为1,非叶子结点就递归他的左子树和右子树就完了,并且统计为0(这里代码中隐式为0,没有写出)


  if (root == NULL)
  {
    return 0;
  }
//这里过滤掉的是空节点,并且返回0后面统计
  if (root->left == NULL && root->right == NULL)
  {
    return 1;
  }
//这里过滤的是叶子结点,并且叶子结点要返回1给后面统计
  return TreeLeftSize(root->left) + TreeLeftSize(root->right);
//这里就是对非空结点中的非叶子结点的左子树和右子树进行递归(并且既然root是非叶子结点的话就不用+1)

这里我觉得递归的     return TreeLeftSize(root->left) + TreeLeftSize(root->right);这段从近root的来看就是意味着是root的左右节点,从远的递归的角度来看却是左右子树的性质,显然是第二种远的角度来看合理一点.

int TreeLeftSize(BTNode* root)
{
  if (root == NULL)
  {
    return 0;
  }
  if (root->left == NULL && root->right == NULL)
  {
    return 1;
  }
  return TreeLeftSize(root->left) + TreeLeftSize(root->right);
}

到了这里我希望你能看出这道题和上道题目的一点区别:(画框的区域代表的是遍历的区域)


image.png

9.求二叉树的高度

这里我们要求二叉树的高度,首先我们就得知道针对得对象是非叶子节点,就得先递归求出左子树和右子树的高度,然后进行比较再分析一下才能求出整个二叉树的高度,所以这里我们得采用类似后序遍历得方式进行求二叉树的高度,

思路:父亲的高度=左右子树高度的最大值+1

int TreeHeight(BTNode* root)
{
  if (root == NULL)
  {
    return 0;
  }
  return TreeHeight(root->left) > TreeHeight(root->right) ? TreeHeight(root->left)+1 : TreeHeight(root->right)+1;
}

image.png

目录
相关文章
|
23天前
|
存储 C++
【C++数据结构——树】哈夫曼树(头歌实践教学平台习题) 【合集】
【数据结构——树】哈夫曼树(头歌实践教学平台习题)【合集】目录 任务描述 相关知识 测试说明 我的通关代码: 测试结果:任务描述 本关任务:编写一个程序构建哈夫曼树和生成哈夫曼编码。 相关知识 为了完成本关任务,你需要掌握: 1.如何构建哈夫曼树, 2.如何生成哈夫曼编码。 测试说明 平台会对你编写的代码进行测试: 测试输入: 1192677541518462450242195190181174157138124123 (用户分别输入所列单词的频度) 预
56 14
【C++数据结构——树】哈夫曼树(头歌实践教学平台习题) 【合集】
|
23天前
|
Java C++
【C++数据结构——树】二叉树的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现二叉树的基本运算。​ 相关知识 创建二叉树 销毁二叉树 查找结点 求二叉树的高度 输出二叉树 //二叉树节点结构体定义 structTreeNode{ intval; TreeNode*left; TreeNode*right; TreeNode(intx):val(x),left(NULL),right(NULL){} }; 创建二叉树 //创建二叉树函数(简单示例,手动构建) TreeNode*create
40 12
|
23天前
|
C++
【C++数据结构——树】二叉树的性质(头歌实践教学平台习题)【合集】
本文档介绍了如何根据二叉树的括号表示串创建二叉树,并计算其结点个数、叶子结点个数、某结点的层次和二叉树的宽度。主要内容包括: 1. **定义二叉树节点结构体**:定义了包含节点值、左子节点指针和右子节点指针的结构体。 2. **实现构建二叉树的函数**:通过解析括号表示串,递归地构建二叉树的各个节点及其子树。 3. **使用示例**:展示了如何调用 `buildTree` 函数构建二叉树并进行简单验证。 4. **计算二叉树属性**: - 计算二叉树节点个数。 - 计算二叉树叶子节点个数。 - 计算某节点的层次。 - 计算二叉树的宽度。 最后,提供了测试说明及通关代
40 10
|
23天前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
41 2
|
3月前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
307 9
|
3月前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
48 1
|
23天前
|
存储 C语言 C++
【C++数据结构——栈与队列】顺序栈的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现顺序栈的基本运算。开始你的任务吧,祝你成功!​ 相关知识 初始化栈 销毁栈 判断栈是否为空 进栈 出栈 取栈顶元素 1.初始化栈 概念:初始化栈是为栈的使用做准备,包括分配内存空间(如果是动态分配)和设置栈的初始状态。栈有顺序栈和链式栈两种常见形式。对于顺序栈,通常需要定义一个数组来存储栈元素,并设置一个变量来记录栈顶位置;对于链式栈,需要定义节点结构,包含数据域和指针域,同时初始化栈顶指针。 示例(顺序栈): 以下是一个简单的顺序栈初始化示例,假设用C语言实现,栈中存储
134 77
|
23天前
|
存储 C++ 索引
【C++数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】
【数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】初始化队列、销毁队列、判断队列是否为空、进队列、出队列等。本关任务:编写一个程序实现环形队列的基本运算。(6)出队列序列:yzopq2*(5)依次进队列元素:opq2*(6)出队列序列:bcdef。(2)依次进队列元素:abc。(5)依次进队列元素:def。(2)依次进队列元素:xyz。开始你的任务吧,祝你成功!(4)出队一个元素a。(4)出队一个元素x。
40 13
【C++数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】
|
23天前
|
存储 C语言 C++
【C++数据结构——栈与队列】链栈的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现链栈的基本运算。开始你的任务吧,祝你成功!​ 相关知识 初始化栈 销毁栈 判断栈是否为空 进栈 出栈 取栈顶元素 初始化栈 概念:初始化栈是为栈的使用做准备,包括分配内存空间(如果是动态分配)和设置栈的初始状态。栈有顺序栈和链式栈两种常见形式。对于顺序栈,通常需要定义一个数组来存储栈元素,并设置一个变量来记录栈顶位置;对于链式栈,需要定义节点结构,包含数据域和指针域,同时初始化栈顶指针。 示例(顺序栈): 以下是一个简单的顺序栈初始化示例,假设用C语言实现,栈中存储整数,最大
41 9
|
23天前
|
C++
【C++数据结构——栈和队列】括号配对(头歌实践教学平台习题)【合集】
【数据结构——栈和队列】括号配对(头歌实践教学平台习题)【合集】(1)遇到左括号:进栈Push()(2)遇到右括号:若栈顶元素为左括号,则出栈Pop();否则返回false。(3)当遍历表达式结束,且栈为空时,则返回true,否则返回false。本关任务:编写一个程序利用栈判断左、右圆括号是否配对。为了完成本关任务,你需要掌握:栈对括号的处理。(1)遇到左括号:进栈Push()开始你的任务吧,祝你成功!测试输入:(()))
34 7

热门文章

最新文章