.雇佣 K 名工人的最低成本(java,算法)

简介: .雇佣 K 名工人的最低成本(java,算法)

.雇佣 K 名工人的最低成本(java,算法)


.雇佣 K 名工人的最低成本

有 n 名工人。 给定两个数组 quality 和 wage ,其中,quality[i] 表示第 i 名工人的工作质量,其最低期望工资为 wage[i] 。

现在我们想雇佣 k 名工人组成一个工资组。在雇佣 一组 k 名工人时,我们必须按照下述规则向他们支付工资:

对工资组中的每名工人,应当按其工作质量与同组其他工人的工作质量的比例来支付工资。

工资组中的每名工人至少应当得到他们的最低期望工资。

给定整数 k ,返回 组成满足上述条件的付费群体所需的最小金额 。在实际答案的 10-5 以内的答案将被接受。。

示例 1:

输入: quality = [10,20,5], wage = [70,50,30], k = 2

输出: 105.00000

解释: 我们向 0 号工人支付 70,向 2 号工人支付 35。

示例 2:

输入: quality = [3,1,10,10,1], wage = [4,8,2,2,7], k = 3

输出: 30.66667

解释: 我们向 0 号工人支付 4,向 2 号和 3 号分别支付 13.33333。

思路和注释都在代码块里面了

放张图缓解一下眼疲劳,嘿嘿

package cn.itcast.algorithm.TTT_78;
import java.util.Arrays;
import java.util.PriorityQueue;
public class Main81 {
    public static void main(String[] args) {
        /**
         * 测试用例
         */
        int [] quality = {10,20,5};     //工作质量
        int[] wage = {70,50,30};        //最低期望工资
        int k = 2;      //租用的工人数
        /**
         * 实现方法mincostToHireWorkers
         */
        double sum = mincostToHireWorkers(quality,wage,k);
        System.out.println(sum);
    }
    /*
    (一)每个工人都有自己期望的价性比,雇佣K个工人的时候要满足
    每个人的实际价性比不低于他的期望,
    即需要按照K个工人中的最高期望价性比给这K个人开工资。
    (二)使用了一个大根堆,来获取K个工人的最大的价性比,
    作为K个工人的价性比,使用qsum保存K个工人的质量和。
    要给他们付的工资就是qsum * 最大性价比。
     */
    private static double mincostToHireWorkers(int[] quality, int[] wage, int k) {
        double[][] workers = new double[quality.length][2];
        for (int i = 0; i < quality.length; ++i){//保存工人价性比
            workers[i] = new double[]{(double)(wage[i]) / quality[i], (double)quality[i]};
        }
        Arrays.sort(workers, (a, b) -> Double.compare(a[0], b[0]));
        double qian = Double.MAX_VALUE;
        double qsum = 0.0; //qsum保存K个工人的质量和
        PriorityQueue<Double> pq = new PriorityQueue<>();
        for (double[] worker: workers) {
            qsum += worker[1];
            pq.add(-worker[1]);
            if (pq.size() > k) {
                qsum += pq.poll();
            }
            if (pq.size() == k) {
                qian = Math.min(qian, qsum * worker[0]);
            }
        }
        return qian;
    }
}
相关文章
|
4月前
|
算法 机器人 定位技术
【VRPTW】基于matlab秃鹰算法BES求解带时间窗的骑手外卖配送路径规划问题(目标函数:最优路径成本 含服务客户数量 服务时间 载量 路径长度)(Matlab代码实现)
【VRPTW】基于matlab秃鹰算法BES求解带时间窗的骑手外卖配送路径规划问题(目标函数:最优路径成本 含服务客户数量 服务时间 载量 路径长度)(Matlab代码实现)
148 0
|
2月前
|
设计模式 算法 搜索推荐
Java 设计模式之策略模式:灵活切换算法的艺术
策略模式通过封装不同算法并实现灵活切换,将算法与使用解耦。以支付为例,微信、支付宝等支付方式作为独立策略,购物车根据选择调用对应支付逻辑,提升代码可维护性与扩展性,避免冗长条件判断,符合开闭原则。
388 35
|
2月前
|
存储 算法 搜索推荐
《数据之美》:Java数据结构与算法精要
本系列深入探讨数据结构与算法的核心原理及Java实现,涵盖线性与非线性结构、常用算法分类、复杂度分析及集合框架应用,助你提升程序效率,掌握编程底层逻辑。
|
2月前
|
存储 人工智能 算法
从零掌握贪心算法Java版:LeetCode 10题实战解析(上)
在算法世界里,有一种思想如同生活中的"见好就收"——每次做出当前看来最优的选择,寄希望于通过局部最优达成全局最优。这种思想就是贪心算法,它以其简洁高效的特点,成为解决最优问题的利器。今天我们就来系统学习贪心算法的核心思想,并通过10道LeetCode经典题目实战演练,带你掌握这种"步步为营"的解题思维。
|
3月前
|
IDE 安全 Java
Lombok 在企业级 Java 项目中的隐性成本:便利背后的取舍之道
Lombok虽能简化Java代码,但其“魔法”特性易破坏封装、影响可维护性,隐藏调试难题,且与JPA等框架存在兼容风险。企业级项目应优先考虑IDE生成、Java Records或MapStruct等更透明、稳健的替代方案,平衡开发效率与系统长期稳定性。
190 1
|
3月前
|
机器学习/深度学习 传感器 算法
基于matlab瞬态三角哈里斯鹰算法TTHHO多无人机协同集群避障路径规划(目标函数:最低成本:路径、高度、威胁、转角)(Matlab代码实现)
基于matlab瞬态三角哈里斯鹰算法TTHHO多无人机协同集群避障路径规划(目标函数:最低成本:路径、高度、威胁、转角)(Matlab代码实现)
158 1
|
3月前
|
机器学习/深度学习 并行计算 算法
基于改进的粒子群算法PSO求解电容器布局优化问题HV配电中的功率损耗和成本 IEEE34节点(Matlab代码实现)
基于改进的粒子群算法PSO求解电容器布局优化问题HV配电中的功率损耗和成本 IEEE34节点(Matlab代码实现)
|
3月前
|
算法 安全 数据可视化
基于多目标鲸鱼优化算法(NSWOA)求解地铁隧道竖向位移和成本的双目标求解(以铁道科学报与工程文章为例)研究(Matlab代码实现)
基于多目标鲸鱼优化算法(NSWOA)求解地铁隧道竖向位移和成本的双目标求解(以铁道科学报与工程文章为例)研究(Matlab代码实现)
|
6月前
|
存储 算法 安全
Java中的对称加密算法的原理与实现
本文详细解析了Java中三种常用对称加密算法(AES、DES、3DES)的实现原理及应用。对称加密使用相同密钥进行加解密,适合数据安全传输与存储。AES作为现代标准,支持128/192/256位密钥,安全性高;DES采用56位密钥,现已不够安全;3DES通过三重加密增强安全性,但性能较低。文章提供了各算法的具体Java代码示例,便于快速上手实现加密解密操作,帮助用户根据需求选择合适的加密方案保护数据安全。
438 58
|
4月前
|
机器学习/深度学习 算法 数据挖掘
【配送路径规划】基于螳螂虾算法MShOA求解带时间窗的骑手外卖配送路径规划问题(目标函数:最优路径成本 含服务客户数量 服务时间 载量 路径长度)研究(Matlab代码实现)
【配送路径规划】基于螳螂虾算法MShOA求解带时间窗的骑手外卖配送路径规划问题(目标函数:最优路径成本 含服务客户数量 服务时间 载量 路径长度)研究(Matlab代码实现)
184 0

热门文章

最新文章