力扣(LeetCode)算法题解:1464. 数组中两元素的最大乘积

简介: 力扣(LeetCode)算法题解:1464. 数组中两元素的最大乘积

(一)题目描述

给你一个整数数组 nums,请你选择数组的两个不同下标 i 和 j,使 (nums[i]-1)*(nums[j]-1) 取得最大值。

请你计算并返回该式的最大值。

来源:力扣(LeetCode

链接:https://leetcode-cn.com/problems/maximum-product-of-two-elements-in-an-array

著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

(二)输入、输出示例

示例 1:

输入:nums = [3,4,5,2]
输出:12 
解释:如果选择下标 i=1 和 j=2(下标从 0 开始),则可以获得最大值,(nums[1]-1)*(nums[2]-1)

示例 2:

输入:nums = [1,5,4,5]
输出:16
解释:选择下标 i=1 和 j=3(下标从 0 开始),则可以获得最大值 (5-1)*(5-1) = 16 。

示例 3:

输入:nums = [3,7]
输出:12
• 1
• 2

(三)代码实现

方法1(php版):

解题思路

1.求(nums[i]-1)×(nums[j]-1) 的最大值。实际就是求nums[i]和nums[j]的最大值。

2.降序排列,取下标为0和1的元素,即为最大值与次大值。

3.代入公式计算值。

代码实现

class Solution {
    /**
     * @param Integer[] $nums
     * @return Integer
     */
    function maxProduct($nums) {
        rsort($nums);
        return (($nums[0]-1) * ($nums[1]-1));
    }
}


(四)性能分析

运行时间 内存消耗
20ms 14.9 MB
目录
相关文章
|
2月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
50 3
|
2月前
|
算法
Leetcode 初级算法 --- 数组篇
Leetcode 初级算法 --- 数组篇
41 0
|
2月前
|
算法 程序员 索引
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
栈的基本概念、应用场景以及如何使用数组和单链表模拟栈,并展示了如何利用栈和中缀表达式实现一个综合计算器。
39 1
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
|
2月前
|
存储 算法 Java
Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性
Java Set因其“无重复”特性在集合框架中独树一帜。本文解析了Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性,并提供了最佳实践建议,包括选择合适的Set实现类和正确实现自定义对象的hashCode()与equals()方法。
40 4
|
2月前
|
存储 算法 定位技术
数据结构与算法学习二、稀疏数组与队列,数组模拟队列,模拟环形队列
这篇文章主要介绍了稀疏数组和队列的概念、应用实例以及如何使用数组模拟队列和环形队列的实现方法。
25 0
数据结构与算法学习二、稀疏数组与队列,数组模拟队列,模拟环形队列
|
2月前
|
算法
【链表】算法题(二) ----- 力扣/牛客
【链表】算法题(二) ----- 力扣/牛客
|
2月前
|
算法
【链表】算法题(一) ----- 力扣 / 牛客
【链表】算法题(一) ----- 力扣 / 牛客
|
2月前
|
算法
【顺序表】算法题 --- 力扣
【顺序表】算法题 --- 力扣
|
7天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
5天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。