力扣(LeetCode)算法题解:1299. 将每个元素替换为右侧最大元素

简介: 力扣(LeetCode)算法题解:1299. 将每个元素替换为右侧最大元素

(一)题目描述

给你一个数组 arr ,请你将每个元素用它右边最大的元素替换,如果是最后一个元素,用 -1 替换。

完成所有替换操作后,请你返回这个数组。

来源:力扣(LeetCode

链接:https://leetcode-cn.com/problems/reverse-words-in-a-string-iii

著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

(二)输入、输出示例

示例 1:

输入:arr = [17,18,5,4,6,1]
输出:[18,6,6,6,1,-1]

(三)代码实现

方法1(php版):

解题思路

1.既然需要找到每个元素右侧的最大值,肯定需要遍历1次。

2.如果正序来查找,那判断你右侧最大值的时候也需要遍历n-1次。那就是o(n²)的时间复杂度

3.本题技巧在于从后往前查找。默认max是最大值,从后往前遍历,判断每个元素是否比最大值大,如果是则交换;若否则继续遍历。

4.顺带考察了如果交换两个数的值。

代码实现

class Solution {
    /**
     * @param Integer[] $arr
     * @return Integer[]
     */
    function replaceElements($arr) {
        $max = -1;
        for ($k = count($arr)-1; $k >=0 ; $k--){
            $temp = $arr[$k];
            $arr[$k] = $max; // 将右侧的最大值赋值给当前元素
            if($temp > $max){
              // 更新最大值
                $max = $temp;
            }
        }
        return $arr;
    }
}

(四)性能分析

运行时间 内存消耗
8ms 14.8 MB
目录
相关文章
|
2月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
50 3
|
1月前
|
存储 算法 Java
leetcode算法题-有效的括号(简单)
【11月更文挑战第5天】本文介绍了 LeetCode 上“有效的括号”这道题的解法。题目要求判断一个只包含括号字符的字符串是否有效。有效字符串需满足左括号必须用相同类型的右括号闭合,并且左括号必须以正确的顺序闭合。解题思路是使用栈数据结构,遍历字符串时将左括号压入栈中,遇到右括号时检查栈顶元素是否匹配。最后根据栈是否为空来判断字符串中的括号是否有效。示例代码包括 Python 和 Java 版本。
|
2月前
|
存储 算法 Java
Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性
Java Set因其“无重复”特性在集合框架中独树一帜。本文解析了Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性,并提供了最佳实践建议,包括选择合适的Set实现类和正确实现自定义对象的hashCode()与equals()方法。
40 4
|
2月前
|
程序员 C语言
【C语言】LeetCode(力扣)上经典题目
【C语言】LeetCode(力扣)上经典题目
|
2月前
|
算法
【链表】算法题(二) ----- 力扣/牛客
【链表】算法题(二) ----- 力扣/牛客
|
2月前
|
索引
力扣(LeetCode)数据结构练习题(3)------链表
力扣(LeetCode)数据结构练习题(3)------链表
90 0
|
2月前
力扣(LeetCode)数据结构练习题(2)
力扣(LeetCode)数据结构练习题(2)
31 0
|
2月前
|
存储
力扣(LeetCode)数据结构练习题
力扣(LeetCode)数据结构练习题
53 0
|
7天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
13天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。