Faster R-CNN思想总结

简介: Faster R-CNN思想总结

Faster R-CNN

在这里插入图片描述

面临的问题

在当时,Fast RCNN已经获得了较大的突破,但是仍然存在一些问题,fast rcnn的提取候选框的方法 selective search 不能GPU并行计算,速度还是有很大的提升空间,作者的想法是能不能提取一次图像的特征后,即利用了GPU的并行资源,还实现了提取特征与提取候选框这两个功能。

RPN网络

在这里插入图片描述

网络细节

当卷积层提取到feature map后 ,在卷积层后利用一个3 3 的卷积核提取每个feature map点的特征(这个卷积核与之前的不太一样),根据 卷积核扫描图像对应区域的中点,按照1 :1 1:2 2:1 三个 hw比和三个尺寸生成9个 anchors,一共会生成 h w 9个候选框,3 3的卷积过后接一个全连接层,然后输出 9个值,代表是否为正类的概率(是否包含物体),同时 ,输出 4 * 9的值用来回归精修anchor。
假设我的 原图经过卷积层提取特征后输出 5 5 256 的feature map, 然后 输入到 3 3 特殊的卷积,这个卷积核每划动一下,他在这个feature 的作用区域 就是 3 3 256 ,对每个channel执行卷积操作后得到 1 1 *256的feature map,然后不进行相加操作,直接对这个 feature map后接全连接层 分类+回归,然后每划动一次都执行上述操作,生成候选框。

RPN Trianing Method

打标签

上面说了如何前想计算,接下来说如何打标签,利用生成的anchor 对每张图像标记好的真实标签计算IOU,如果一个anchor与这张图像的任意一个anchor最近,那么直接标注为正类,如果与标签的IOU大于0.7也标记为正类,如果小于0.3就标记为负类,其余的直接忽略不计。

损失函数

它的损失函数与 fast rcnn基本一致,只是分类阶段换成了两类(是否为正类)。
在这里插入图片描述

四步交替训练

  1. 先训练 RPN网络。
  2. 把训练好的RPN网络生成的anchor给fast rcnn,训练fast rcnn。
  3. 把fast rcnn 训练好的 cnn权重同步给 RPN,锁定这个权重,fine-tune其它层。
  4. 把训练好的RPN网络生成的anchor送到fast rcnn,其中也是锁定conv权重,fine-tune,训练好后合并两个模型形成faster rcnn。

    Q&A

    如果 3 *3的卷积核在图像边界,那么生成的anchor可能会超过原图边界,这种anchor直接丢弃。
    通过rpn网络生成的候选框,由于重合部分较大,最后也会执行一次nms去重,或者按照分类得分进行排序筛选。

目录
相关文章
|
8月前
|
机器学习/深度学习 算法 安全
FRCNN来袭 | Faster RCNN与FCN永不遗忘,联邦学习+边缘数据既保护隐私也提升性能
FRCNN来袭 | Faster RCNN与FCN永不遗忘,联邦学习+边缘数据既保护隐私也提升性能
355 0
|
机器学习/深度学习 算法 数据挖掘
m基于Faster R-CNN网络的烟雾检测系统matlab仿真,带GUI操作界面
m基于Faster R-CNN网络的烟雾检测系统matlab仿真,带GUI操作界面
138 0
|
8月前
|
机器学习/深度学习 数据可视化 定位技术
PrObeD方法开源 | 主动方法助力YOLOv5/Faster RCNN/DETR在COCO/GOD涨点
PrObeD方法开源 | 主动方法助力YOLOv5/Faster RCNN/DETR在COCO/GOD涨点
88 0
|
8月前
|
机器学习/深度学习 监控 算法
【Keras计算机视觉】Faster R-CNN神经网络实现目标检测实战(附源码和数据集 超详细)
【Keras计算机视觉】Faster R-CNN神经网络实现目标检测实战(附源码和数据集 超详细)
169 0
|
8月前
|
机器学习/深度学习 算法 固态存储
【计算机视觉】目标检测中Faster R-CNN、R-FCN、YOLO、SSD等算法的讲解(图文解释 超详细必看)
【计算机视觉】目标检测中Faster R-CNN、R-FCN、YOLO、SSD等算法的讲解(图文解释 超详细必看)
515 0
|
机器学习/深度学习 算法 计算机视觉
m基于Faster R-CNN网络的火灾识别系统matlab仿真,带GUI界面
m基于Faster R-CNN网络的火灾识别系统matlab仿真,带GUI界面
122 0
|
机器学习/深度学习 人工智能 算法
目标检测:RPN — Faster R-CNN 的主干
目标检测:RPN — Faster R-CNN 的主干
262 0
|
编解码 开发工具 计算机视觉
Faster RCNN超快版本来啦 | TinyDet用小于1GFLOPS实现30+AP,小目标炸裂(二)
Faster RCNN超快版本来啦 | TinyDet用小于1GFLOPS实现30+AP,小目标炸裂(二)
597 0
|
机器学习/深度学习 编解码 人工智能
Faster RCNN超快版本来啦 | TinyDet用小于1GFLOPS实现30+AP,小目标炸裂(一)
Faster RCNN超快版本来啦 | TinyDet用小于1GFLOPS实现30+AP,小目标炸裂(一)
262 0
|
编解码 计算机视觉
3D检测新SOTA | PointPillar与Faster RCNN结合会碰撞出怎样的火花(二)
3D检测新SOTA | PointPillar与Faster RCNN结合会碰撞出怎样的火花(二)
248 0

热门文章

最新文章