经典神经网络 | 从Inception v1到Inception v4全解析

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 经典神经网络 | 从Inception v1到Inception v4全解析

本文介绍了 Inception 家族的主要成员,包括 Inception v1、Inception v2 、Inception v3、Inception v4 和 Inception-ResNet。它们的计算效率与参数效率在所有卷积架构中都是顶尖的。

Inception 网络是CNN分类器发展史上一个重要的里程碑。在 Inception 出现之前,大部分流行 CNN 仅仅是把卷积层堆叠得越来越多,使网络越来越深,以此希望能够得到更好的性能。

例如AlexNet,GoogleNet、 VGG-Net、ResNet等都是通过加深网络的层次和深度来提高准确率。

GoogLeNet 最大的特点就是使用了 Inception 模块,它的目的是设计一种具有优良局部拓扑结构的网络,即对输入图像并行地执行多个卷积运算或池化操作,并将所有输出结果拼接为一个非常深的特征图。因为 1*1、3*3 或 5*5 等不同的卷积运算与池化操作可以获得输入图像的不同信息,并行处理这些运算并结合所有结果将获得更好的图像表征。

Inception常见的版本有:

  • Inception v1
  • Inception v2 和 Inception v3
  • Inception v4 和 Inception-ResNet

每个版本都是前一个版本的迭代进化。了解 Inception 网络的升级可以帮助我们构建自定义分类器,优化速度和准确率。

Inception v1


Inception v1首先是出现在《Going deeper with convolutions》这篇论文中,作者提出一种深度卷积神经网络 Inception,它在 ILSVRC14 中达到了当时最好的分类和检测性能。

Inception v1的主要特点:一是挖掘了1 1卷积核的作用*,减少了参数,提升了效果;二是让模型自己来决定用多大的的卷积核

1* 1卷积


074604a651c7e62a29a044dc6dd0d48b.jpg

1* 1卷积不仅可以减少神经网络的参数量,还可以压缩通道数,大大提高了计算效率。

把不同大小的卷积核组合在一起


306505fe02a61cbbd4b527e65c2c6ca1.jpg

把不同的卷积核组合在一起,不仅可以增大感受野,而且还可以提高神经网络的鲁棒性。在一层里把不同大小的卷积核叠在一起后,意味着一层里可以产生不同大小的卷积核处理之后的效果,也意味着不用人为的来选择这一层要怎么卷,这个网络自己便会学习用什么样的卷积(或池化)操作最好。

下面是卷积神经网络Inception模块的基本组成部分:

3a8dd51035cd878c6ee892741e5d1af6.jpg

Inception v2


Inception v2 和 Inception v3 来自同一篇论文《Rethinking the Inception Architecture for Computer Vision》,作者提出了一系列能增加准确度和减少计算复杂度的修正方法。

将5* 5卷积分解为两个3* 3卷积


将 5×5 的卷积分解为两个 3×3 的卷积运算以提升计算速度。如此可以有效地只使用约(3x3 + 3x3)/(5x5)=72%的计算开销。下图可看出此替换的有效性。

3a9e1d95efd055413375bc334fb70789.jpg

所以升级后的Inception模块如下图所示:

6cf9ebd8981d0e474c360d7e68cb8402.jpg

最左侧前一版 Inception 模块中的 5×5 卷积变成了两个 3×3 卷积的堆叠。

将 n*n 的卷积核尺寸分解为 1×n 和 n×1 两个卷积。


例如,一个 3×3 的卷积等价于首先执行一个 1×3 的卷积再执行一个 3×1 的卷积。这样同样可以只使用约(1x3 + 3x1) / (3x3) = 67%的计算开销。下图是此替换的有效性。作者更进一步发挥想象,认为任一个nxn conv都可通过替换为两个分别为1xnnx1的convs层来节省计算与内存。

6e353b8867b0205c791211951f80beb3.jpg

更新后的Inception模块如下图所示:

af6245788d3796a2b4a82e1c1fb7af75.jpg

此处如果 n=3,则与上一张图像一致。最左侧的 5x5 卷积可被表示为两个 3x3 卷积,它们又可以被表示为 1x3 和 3x1 卷积。

模块中的滤波器组被扩展(即变得更宽而不是更深),以解决表征性瓶颈。如果该模块没有被拓展宽度,而是变得更深,那么维度会过多减少,造成信息损失。如下图所示:

c78987802c47230dcedd6d6c35b52b9b.jpg

Inception v3


Inception v3 整合了前面 Inception v2 中提到的所有升级,还使用了:

  • RMSProp 优化器;
  • Factorized 7x7 卷积;
  • 辅助分类器使用了 BatchNorm;
  • 标签平滑(添加到损失公式的一种正则化项,旨在阻止网络对某一类别过分自信,即阻止过拟合)。

Inception v2和Inception v3最终模型


e024d0d11bf37ecc7219089885037b68.jpg

Inception v4


Inception v4 和 Inception -ResNet 在同一篇论文《Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning》中提出来。

Inception v4网络结构


290d01de56705349a01375e958100f6e.jpg

首先stem分支,可以直接看论文的结构图:

75111a3c41cd9fe3eb4ed2fc0ef1622f.jpg

然后接下来它们有三个主要的Inception 模块和Reduction模块,称为 A、B 和 C(和 Inception v2 不同,这些模块确实被命名为 A、B 和 C)。它们看起来和 Inception v2(或 v3)变体非常相似。

Inception v4 引入了专用的「缩减块」(reduction block),它被用于改变网格的宽度和高度。早期的版本并没有明确使用缩减块,但也实现了其功能。

缩减块 A(从 35x35 到 17x17 的尺寸缩减)和缩减块 B(从 17x17 到 8x8 的尺寸缩减)。这里参考了论文中的相同超参数设置(V,I,k)。

直接看其网络结构:

ee94fb0318d96c351f0cb78bee2b4e47.jpg

Inception-ResNet


在该论文中,作者将Inception 架构残差连接(Residual)结合起来。并通过实验明确地证实了,结合残差连接可以显著加速 Inception 的训练。也有一些证据表明残差 Inception 网络在相近的成本下略微超过没有残差连接的 Inception 网络。作者还通过三个残差和一个 Inception v4 的模型集成,在 ImageNet 分类挑战赛的测试集上取得了 3.08% 的 top-5 误差率。

cf23411b992f2ccf4817c3e112ea1fb6.jpg

(左起)Inception ResNet 中的 Inception 模块 A、B、C。注意池化层被残差连接所替代,并在残差加运算之前有额外的 1x1 卷积。

  • 主要 inception 模块的池化运算由残差连接替代。然而,你仍然可以在缩减块中找到这些运算。缩减块 A 和 Inception v4 中的缩减块相同。

具体Inception-resnet A、B、C各个模块网络结构详见原论文

针对深网络结构设计的衰减因子


如果卷积核的数量超过 1000,则网络架构更深层的残差单元将导致网络崩溃。因此,为了增加稳定性,作者通过 0.1 到 0.3 的比例缩放残差激活值。

38ab5e2dc647fe462a233c49c60433df.jpg

激活值通过一个常数进行比例缩放,以防止网络崩溃。

Inception-ResNet v1结构


a598d1dd0399c19e9385b7d8bcab7a95.jpg

结果精度对比


16ec6ad0f9850a790d0b06596f18c21d.jpg

相关文章
|
23天前
|
安全 虚拟化
在数字化时代,网络项目的重要性日益凸显。本文从前期准备、方案内容和注意事项三个方面,详细解析了如何撰写一个优质高效的网络项目实施方案,帮助企业和用户实现更好的体验和竞争力
在数字化时代,网络项目的重要性日益凸显。本文从前期准备、方案内容和注意事项三个方面,详细解析了如何撰写一个优质高效的网络项目实施方案,帮助企业和用户实现更好的体验和竞争力。通过具体案例,展示了方案的制定和实施过程,强调了目标明确、技术先进、计划周密、风险可控和预算合理的重要性。
41 5
|
25天前
|
SQL 安全 网络安全
网络安全的护城河:漏洞防御与加密技术的深度解析
【10月更文挑战第37天】在数字时代的浪潮中,网络安全成为守护个人隐私与企业资产的坚固堡垒。本文将深入探讨网络安全的两大核心要素——安全漏洞和加密技术,以及如何通过提升安全意识来强化这道防线。文章旨在揭示网络攻防战的复杂性,并引导读者构建更为稳固的安全体系。
32 1
|
1月前
|
SQL 安全 测试技术
网络安全的盾牌与剑——漏洞防御与加密技术解析
【10月更文挑战第28天】 在数字时代的浪潮中,网络空间安全成为我们不可忽视的战场。本文将深入探讨网络安全的核心问题,包括常见的网络安全漏洞、先进的加密技术以及提升个人和组织的安全意识。通过实际案例分析和代码示例,我们将揭示黑客如何利用漏洞进行攻击,展示如何使用加密技术保护数据,并强调培养网络安全意识的重要性。让我们一同揭开网络安全的神秘面纱,为打造更加坚固的数字防线做好准备。
41 3
|
20天前
|
安全 算法 网络安全
网络安全的盾牌与剑:漏洞防御与加密技术解析
【10月更文挑战第42天】在数字时代的海洋中,网络安全是守护数据宝藏的坚固盾牌和锋利之剑。本文将揭示网络安全的两大支柱——漏洞防御和加密技术,通过深入浅出的方式,带你了解如何发现并堵塞安全漏洞,以及如何使用加密技术保护信息不被窃取。我们将一起探索网络安全的奥秘,让你成为信息时代的智者和守护者。
32 6
|
20天前
|
存储 SQL 安全
网络安全的屏障与钥匙:漏洞防御与加密技术解析
【10月更文挑战第42天】在数字时代的浪潮中,网络安全成为守护个人隐私与企业数据不被侵犯的关键防线。本文将深入探讨网络安全中的两大核心议题——漏洞防御和加密技术。我们将从网络漏洞的识别开始,逐步揭示如何通过有效的安全策略和技术手段来防范潜在的网络攻击。随后,文章将转向加密技术的奥秘,解读其在数据传输和存储过程中保护信息安全的作用机制。最后,强调提升个人和企业的安全意识,是构建坚固网络安全屏障的重要一环。
|
23天前
RS-485网络中的标准端接与交流电端接应用解析
RS-485,作为一种广泛应用的差分信号传输标准,因其传输距离远、抗干扰能力强、支持多点通讯等优点,在工业自动化、智能建筑、交通运输等领域得到了广泛应用。在构建RS-485网络时,端接技术扮演着至关重要的角色,它直接影响到网络的信号完整性、稳定性和通信质量。
|
23天前
|
网络协议 网络安全 网络虚拟化
本文介绍了十个重要的网络技术术语,包括IP地址、子网掩码、域名系统(DNS)、防火墙、虚拟专用网络(VPN)、路由器、交换机、超文本传输协议(HTTP)、传输控制协议/网际协议(TCP/IP)和云计算
本文介绍了十个重要的网络技术术语,包括IP地址、子网掩码、域名系统(DNS)、防火墙、虚拟专用网络(VPN)、路由器、交换机、超文本传输协议(HTTP)、传输控制协议/网际协议(TCP/IP)和云计算。通过这些术语的详细解释,帮助读者更好地理解和应用网络技术,应对数字化时代的挑战和机遇。
67 3
|
23天前
|
存储 网络协议 安全
30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场
本文精选了 30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场。
66 2
|
1月前
|
边缘计算 自动驾驶 5G
5G网络架构解析:从核心网到边缘计算
【10月更文挑战第24天】
104 10
|
1月前
|
SQL 安全 算法
网络安全的屏障与钥匙:漏洞防护与加密技术解析
【10月更文挑战第31天】在数字世界的海洋中,网络安全是航船的坚固屏障,而信息安全则是守护宝藏的金钥匙。本文将深入探讨网络安全的薄弱环节——漏洞,以及如何通过加密技术加固这道屏障。从常见网络漏洞的类型到最新的加密算法,我们不仅提供理论知识,还将分享实用的安全实践技巧,帮助读者构建起一道更加坚不可摧的防线。
28 1

推荐镜像

更多