训练神经网络的一些实用技巧

简介: 训练神经网络的一些实用技巧

神经网络参数的调节和选取一般都比较玄学,需要有比较丰富的经验才能训练出比较SOTA的网络。下面总结出几个比较常见且实用的训练技巧。

ce41a9a0ef3446a1656523fda98fdd47.jpg

为模型选择正确的最后一层激活和损失函数

batch_size的选择


使用大的batch size有害身体健康。更重要的是,它对测试集的error不利。一个真正的朋友不会让你使用大于32的batch size。直说了吧:2012年来人们开始转而使用更大batch size的原因只是我们的GPU不够强大,处理小于32的batch size时效率太低。这是个糟糕的理由,只说明了我们的硬件还很辣鸡。也就是最好的实验表现都是在batch size处于2~32之间得到的。因为batch_size越小时每次更新时由于没有使用全量数据而仅仅使用batch内数据,从而人为给训练带来了噪声,而这个操作却往往能够带领算法走出局部最优(鞍点)。当模型训练到尾声,想更精细化地提高成绩(比如论文实验/比赛到最后),有一个有用的trick,就是设置batch size为1,即做纯SGD,慢慢把error磨低。

一些技巧


一旦得到了具有统计功效的模型,问题就变成了:模型是否足够强大?它是否具有足够多的层和参数来对问题进行建模?例如,只有单个隐藏层且只有两个单元的网络,在 MNIST 问题上具有统计功效,但并不足以很好地解决问题。请记住,机器学习中无处不在的对立是优化和泛化的对立,理想的模型是刚好在欠拟合和过拟合的界线上,在容量不足和容量过大的界线上。为了找到这条界线,你必须穿过它。要搞清楚你需要多大的模型,就必须开发一个过拟合的模型,这很简单。

  • 添加更多的层。
  • 让每一层变得更大。
  • 训练更多的轮次。

要始终监控训练损失和验证损失,以及你所关心的指标的训练值和验证值。如果你发现模型在验证数据上的性能开始下降,那么就出现了过拟合。下一阶段将开始正则化和调节模型,以便尽可能地接近理想模型,既不过拟合也不欠拟合。

模型正则化与调节超参数


这一步是最费时间的:你将不断地调节模型、训练、在验证数据上评估(这里不是测试数据)、再次调节模型,然后重复这一过程,直到模型达到最佳性能。你应该尝试以下几项:

1)添加 dropout。

2)尝试不同的架构:增加或减少层数。

3)添加 L1 和 / 或 L2 正则化。

4) 尝试不同的超参数(比如每层的单元个数或优化器的学习率),以找到最佳配置。

5)(可选)反复做特征工程:添加新特征或删除没有信息量的特征。

请注意:每次使用验证过程的反馈来调节模型,都会将有关验证过程的信息泄露到模型中。如果只重复几次,那么无关紧要;但如果系统性地迭代许多次,最终会导致模型对验证过程过拟合(即使模型并没有直接在验证数据上训练)。这会降低验证过程的可靠性。

一旦开发出令人满意的模型配置,你就可以在所有可用数据(训练数据 + 验证数据)上训练最终的生产模型,然后在测试集上最后评估一次。如果测试集上的性能比验证集上差很多,那么这可能意味着你的验证流程不可靠,或者你在调节模型参数时在验证数据上出现了过拟合。在这种情况下,你可能需要换用更加可靠的评估方法,比如重复的 K 折验证。

相关文章
|
23天前
|
机器学习/深度学习
神经网络与深度学习---验证集(测试集)准确率高于训练集准确率的原因
本文分析了神经网络中验证集(测试集)准确率高于训练集准确率的四个可能原因,包括数据集大小和分布不均、模型正则化过度、批处理后准确率计算时机不同,以及训练集预处理过度导致分布变化。
|
11天前
|
机器学习/深度学习 数据采集 数据可视化
深度学习实践:构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行分类
本文详细介绍如何使用PyTorch构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行图像分类。从数据预处理、模型定义到训练过程及结果可视化,文章全面展示了深度学习项目的全流程。通过实际操作,读者可以深入了解CNN在图像分类任务中的应用,并掌握PyTorch的基本使用方法。希望本文为您的深度学习项目提供有价值的参考与启示。
|
1月前
|
机器学习/深度学习
CNN网络编译和训练
【8月更文挑战第10天】CNN网络编译和训练。
66 20
|
22天前
|
机器学习/深度学习 PyTorch 测试技术
深度学习入门:使用 PyTorch 构建和训练你的第一个神经网络
【8月更文第29天】深度学习是机器学习的一个分支,它利用多层非线性处理单元(即神经网络)来解决复杂的模式识别问题。PyTorch 是一个强大的深度学习框架,它提供了灵活的 API 和动态计算图,非常适合初学者和研究者使用。
33 0
|
1月前
|
机器学习/深度学习 API 算法框架/工具
【Tensorflow+keras】Keras API两种训练GAN网络的方式
使用Keras API以两种不同方式训练条件生成对抗网络(CGAN)的示例代码:一种是使用train_on_batch方法,另一种是使用tf.GradientTape进行自定义训练循环。
24 5
|
23天前
|
机器学习/深度学习 自然语言处理 TensorFlow
深度学习的奥秘:探索神经网络的构建与训练
【8月更文挑战第28天】本文旨在揭开深度学习的神秘面纱,通过浅显易懂的语言和直观的代码示例,引导读者理解并实践神经网络的构建与训练。我们将从基础概念出发,逐步深入到模型的实际应用,让初学者也能轻松掌握深度学习的核心技能。
|
3月前
|
机器学习/深度学习 算法
**反向传播算法**在多层神经网络训练中至关重要,它包括**前向传播**、**计算损失**、**反向传播误差**和**权重更新**。
【6月更文挑战第28天】**反向传播算法**在多层神经网络训练中至关重要,它包括**前向传播**、**计算损失**、**反向传播误差**和**权重更新**。数据从输入层流经隐藏层到输出层,计算预测值。接着,比较预测与真实值计算损失。然后,从输出层开始,利用链式法则反向计算误差和梯度,更新权重以减小损失。此过程迭代进行,直到损失收敛或达到训练次数,优化模型性能。反向传播实现了自动微分,使模型能适应训练数据并泛化到新数据。
52 2
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】36. 门控循环神经网络之长短期记忆网络(LSTM)介绍、Pytorch实现LSTM并进行训练预测
【从零开始学习深度学习】36. 门控循环神经网络之长短期记忆网络(LSTM)介绍、Pytorch实现LSTM并进行训练预测
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
1月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。

热门文章

最新文章