经典神经网络 | GoogleNet 论文解析及代码实现

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 经典神经网络 | GoogleNet 论文解析及代码实现

157c14dd29db3565e580133a18c84549.png

论文研究目标


利用赫布理论和多尺度处理直觉设计一种增加深度和宽度的提高内部计算资源利用率的(同时保持了计算预算不变)网络。GoogleNet在ImageNet分类比赛的Top-5错误率降到了6.7%。

创新点


  • 提出Inception模块
  • 使用辅助Loss
  • 全连接层使用简单的平均池化代替

网络主要结构


138a3b3c4fcbfd7718c3122530ac66cd.jpg

图一  网络总体架构

上图为主要包含Inception块+辅助分类器的GoogLeNet结构示意图。

Inception模块


07a80b0b161ebd3a157dad1d465ccf98.jpg

上图为Inception块示意图 (a)为普通的Inception块;(b)为带有1×1卷积的,可以对输入通道降维的Inception块

Inception模块特点


  1. 由Inception基础块组成。
  2. Inception块相当于⼀个有4条线路的⼦⽹络。它通过不同窗口形状的卷积层和最⼤池化层来并⾏抽取信息,并使⽤1×1卷积层减少通道数从而降低模型复杂度。
  3. 可以⾃定义的超参数是每个层的输出通道数,我们以此来控制模型复杂度。

371ac25cc9e41aee3cfd4276d9d52e1c.png

针对同一个输入层,在Inception块中有四条并行的线路,其中前1~3个是1×1卷积层,第4个是一个MaxPooling池化层,这四条线路最后的输出拥有相同的shape和不同的channel通道数。于是,这些输出最后可在channel维度进行合并。例如:28×28×64,28×28×128,28×28×32,28×28×32。通道合并层的shape:28×28×256(64+128+32+32)。

举例分析加入1*1卷积核设计的好处:

假设输入时256个feature map进来,256个feature map输出,假设Inception层只执行3x3的卷积,那么这就需要执行 (256x256) x (3x3) 次乘法(大约589,000次计算操作)。现在Bottleneck layer的思想是先来减少特征的数量,我们首先执行256 -> 64 的1×1卷积,然后在所有Bottleneck layer的分支上对64大小的feature map进行卷积,最后再64 -> 256 1x1卷积。

操作量是:

256×64 × 1×1 = 16,384      64x1x1卷积核对上一层输出卷积计算

64×256 × 3×3= 147456      256x3x3卷积核对1x1卷积输出进行卷积计算

总共约163840,而我们以前有近600,000。减少3倍多的操作。

layer设计


GoogLeNet是作者团队在参加2014大规模视觉挑战赛时送去参加的几种Inception结构的模型之一。该网络设计时考虑了计算效率和实用性,故可以在单个设备上运行推理,对低内存设备比较友好。整个网络使用了9个Inception块,结构排布如表格中所示:

e75f0d3ac974f778069cca2f9569683a.jpg

训练方法


模型训练采用了DistBelief分布式机器学习系统对GoogleNet进行了训练(CPU)。论文表示使用高端GPU,可以在1周内完成模型的训练。训练采用了0.9动量的异步随机梯度下降,固定学习率(每8个迭代学习率降低4%),另外使用各个各个尺寸的图片(数据增强)对于降低过拟合很有用。

总结&实验结果


作者在论文中表示,用现有的dense结构来组合构建出最佳的稀疏结构,是改善计算机视觉神经网络的可行方法。与较浅和较窄的网络结构相比,该方法的优点在于计算量适度增加的情况下显著提高网络效果。在目标检测领域,尽管没有利用上下文和bounding box回归,我们的效果还是很好,进一步表面Inception结构的优越性,未来将在此基础上继续研究更加精细和自动化地方式来创造稀疏结构用以促进各领域的工作。

e1852f18c81e074feff7c9e5e41bb999.png

代码实现如下图的GoogLenet网络


a13c2d65ade5c42e7342d1e598ef0b70.png

构建Inception基本模块

class Inception(nn.Module):
    # c1 - c4为每条线路里的层的输出通道数
    def __init__(self, in_c, c1, c2, c3, c4):
        super(Inception, self).__init__()
        # 线路1,单1 x 1卷积层
        self.p1_1 = nn.Conv2d(in_c, c1, kernel_size=1)
        # 线路2,1 x 1卷积层后接3 x 3卷积层
        self.p2_1 = nn.Conv2d(in_c, c2[0], kernel_size=1)
        self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)
        # 线路3,1 x 1卷积层后接5 x 5卷积层
        self.p3_1 = nn.Conv2d(in_c, c3[0], kernel_size=1)
        self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)
        # 线路4,3 x 3最大池化层后接1 x 1卷积层
        self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
        self.p4_2 = nn.Conv2d(in_c, c4, kernel_size=1)
    def forward(self, x):
        p1 = F.relu(self.p1_1(x))
        p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))
        p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))
        p4 = F.relu(self.p4_2(self.p4_1(x)))
        return torch.cat((p1, p2, p3, p4), dim=1)  # 在通道维上连结输出
总体实现
b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
                   nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1),
                   nn.Conv2d(64, 192, kernel_size=3, padding=1),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),
                   Inception(256, 128, (128, 192), (32, 96), 64),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),
                   Inception(512, 160, (112, 224), (24, 64), 64),
                   Inception(512, 128, (128, 256), (24, 64), 64),
                   Inception(512, 112, (144, 288), (32, 64), 64),
                   Inception(528, 256, (160, 320), (32, 128), 128),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),
                   Inception(832, 384, (192, 384), (48, 128), 128),
                   d2l.GlobalAvgPool2d())
net = nn.Sequential(b1, b2, b3, b4, b5, 
                    d2l.FlattenLayer(), nn.Linear(1024, 10))
net = nn.Sequential(b1, b2, b3, b4, b5, d2l.FlattenLayer(), nn.Linear(1024, 10))
X = torch.rand(1, 1, 96, 96)
for blk in net.children(): 
    X = blk(X)
    print('output shape: ', X.shape)
#batchsize=128
batch_size = 16
# 如出现“out of memory”的报错信息,可减小batch_size或resize
#train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
lr, num_epochs = 0.001, 5
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
d2l.train_ch5(net, train_iter, test_iter, batch_size, optimizer, device
相关文章
|
2天前
|
网络协议 网络虚拟化
接收网络包的过程——从硬件网卡解析到IP
【9月更文挑战第18天】这段内容详细描述了网络包接收过程中机制。当网络包触发中断后,内核处理完这批网络包,会进入主动轮询模式,持续处理后续到来的包,直至处理间隙返回其他任务,从而减少中断次数,提高处理效率。此机制涉及网卡驱动初始化时注册轮询函数,通过软中断触发后续处理,并逐步深入内核网络协议栈,最终到达TCP层。整个接收流程分为多个层次,包括DMA技术存入Ring Buffer、中断通知CPU、软中断处理、以及进入内核网络协议栈等多个步骤。
|
2天前
|
数据采集 存储 JSON
从零到一构建网络爬虫帝国:HTTP协议+Python requests库深度解析
在网络数据的海洋中,网络爬虫遵循HTTP协议,穿梭于互联网各处,收集宝贵信息。本文将从零开始,使用Python的requests库,深入解析HTTP协议,助你构建自己的网络爬虫帝国。首先介绍HTTP协议基础,包括请求与响应结构;然后详细介绍requests库的安装与使用,演示如何发送GET和POST请求并处理响应;最后概述爬虫构建流程及挑战,帮助你逐步掌握核心技术,畅游数据海洋。
17 3
|
2天前
|
监控 安全 网络安全
网络安全的盾与剑:漏洞防御与加密技术解析
【9月更文挑战第17天】在数字时代的浪潮中,网络安全成为保护数据和隐私的关键防线。本文深入浅出地探讨了网络安全的两大支柱:漏洞防御和加密技术,旨在提升公众的安全意识并分享防护策略。我们将从基础概念出发,逐步深入到技术细节,不仅阐释原理,还提供实际案例分析,帮助读者构建起一道坚固的数字防御墙。
17 3
|
2天前
|
敏捷开发 安全 测试技术
软件测试的艺术:从代码到用户体验的全方位解析
本文将深入探讨软件测试的重要性和实施策略,通过分析不同类型的测试方法和工具,展示如何有效地提升软件质量和用户满意度。我们将从单元测试、集成测试到性能测试等多个角度出发,详细解释每种测试方法的实施步骤和最佳实践。此外,文章还将讨论如何通过持续集成和自动化测试来优化测试流程,以及如何建立有效的测试团队来应对快速变化的市场需求。通过实际案例的分析,本文旨在为读者提供一套系统而实用的软件测试策略,帮助读者在软件开发过程中做出更明智的决策。
|
7天前
|
存储 安全 算法
网络安全与信息安全的全方位解析
在现代社会,随着信息技术的飞速发展,网络安全和信息安全问题日益凸显。本文将通过浅显易懂的语言和具体的实例,全面解析网络安全漏洞、加密技术以及安全意识等方面的知识,帮助读者提升对网络安全与信息安全的认知和应对能力。
|
9天前
|
机器学习/深度学习 人工智能 TensorFlow
深入骨髓的解析:Python中神经网络如何学会‘思考’,解锁AI新纪元
【9月更文挑战第11天】随着科技的发展,人工智能(AI)成为推动社会进步的关键力量,而神经网络作为AI的核心,正以其强大的学习和模式识别能力开启AI新纪元。本文将探讨Python中神经网络的工作原理,并通过示例代码展示其“思考”过程。神经网络模仿生物神经系统,通过加权连接传递信息并优化输出。Python凭借其丰富的科学计算库如TensorFlow和PyTorch,成为神经网络研究的首选语言。
12 1
|
10天前
|
存储 SQL 安全
网络安全的盾牌:漏洞防御与加密技术解析
【9月更文挑战第9天】在数字时代,网络安全的重要性日益凸显,它不仅是保护个人隐私和数据安全的屏障,也是维护社会稳定和经济繁荣的关键。本文将深入探讨网络安全中的漏洞防御策略、加密技术的运用以及提升公众安全意识的必要性,旨在通过知识分享,增强大众对网络威胁的防范能力,共同构建更安全的网络环境。
|
3天前
|
安全 网络安全 数据安全/隐私保护
网络安全漏洞、加密技术与安全意识的深度解析
【9月更文挑战第16天】在数字化时代,网络安全的重要性不言而喻。本文将深入探讨网络安全的三大支柱:网络漏洞、加密技术和安全意识。我们将从实际案例出发,揭示网络攻击者如何利用安全漏洞进行入侵,分析加密技术如何保护数据安全,以及为何培养良好的安全意识对于防范网络威胁至关重要。通过本文,您将获得实用的网络安全知识和技能,以更好地保护自己和他人的网络空间。
|
3天前
|
安全 网络安全 数据安全/隐私保护
网络安全的护城河:漏洞防御与加密技术解析
【9月更文挑战第16天】在数字信息的海洋中,网络安全是守护数据宝库的坚固城墙。本文将深入探讨网络安全中的漏洞防御和加密技术,揭示安全意识的重要性,并提供实用的代码示例,帮助读者构建起一道道防护墙,确保信息安全的堡垒坚不可摧。
15 0
|
20天前
|
开发者 图形学 API
从零起步,深度揭秘:运用Unity引擎及网络编程技术,一步步搭建属于你的实时多人在线对战游戏平台——详尽指南与实战代码解析,带你轻松掌握网络化游戏开发的核心要领与最佳实践路径
【8月更文挑战第31天】构建实时多人对战平台是技术与创意的结合。本文使用成熟的Unity游戏开发引擎,从零开始指导读者搭建简单的实时对战平台。内容涵盖网络架构设计、Unity网络API应用及客户端与服务器通信。首先,创建新项目并选择适合多人游戏的模板,使用推荐的网络传输层。接着,定义基本玩法,如2D多人射击游戏,创建角色预制件并添加Rigidbody2D组件。然后,引入网络身份组件以同步对象状态。通过示例代码展示玩家控制逻辑,包括移动和发射子弹功能。最后,设置服务器端逻辑,处理客户端连接和断开。本文帮助读者掌握构建Unity多人对战平台的核心知识,为进一步开发打下基础。
42 0

热门文章

最新文章

推荐镜像

更多