MapReduce报错:「MKDirs failed to create file」

简介: MapReduce报错:「MKDirs failed to create file」

MapReduce报错:「MKDirs failed to create file」


ad61faea5ea343a28fe757431d8517ed.jpeg


0. 写在前面

  • Linux: Ubuntu Kylin16.04 
  • Hadoop: Hadoop2.7.2 


1. 程序代码及报错信息

输入、输出路径

zhangsan@hadoop01:/$ ll | grep input
drwxr-xr-x   3 zhangsan  zhangsan   409692003:35 input/
zhangsan@hadoop01:/$ ll | grep output
zhangsan@hadoop01:/$

程序代码

packagecom.mr.ch07.maxmin;
importjava.io.DataInput;
importjava.io.DataOutput;
importjava.io.IOException;
importorg.apache.hadoop.conf.Configuration;
importorg.apache.hadoop.fs.Path;
importorg.apache.hadoop.io.Text;
importorg.apache.hadoop.io.Writable;
importorg.apache.hadoop.mapreduce.Job;
importorg.apache.hadoop.mapreduce.Mapper;
importorg.apache.hadoop.mapreduce.Reducer;
importorg.apache.hadoop.mapreduce.lib.input.FileInputFormat;
importorg.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
publicclassMinMaxValueDemo7_2_1 {
publicstaticclassMinMaxMapperextendsMapper<Object, Text, Text, MinMaxWritable> {
privateMinMaxWritableoutTuple=newMinMaxWritable();
@Overridepublicvoidmap(Objectkey, Textvalue, Contextcontext) throwsIOException, InterruptedException {
String[] strs=value.toString().split(" ");
StringstrDate=strs[0];// 定义记录日期的字符串变量strDateif (strDate==null) {
return;// 如果该日期值为空,则返回    }
System.out.println(strs[0] +",,,,"+strs[1]);
// 将值即做为最大值又做为最小值存储到自定义Writable类MinMaxWritable中。outTuple.setMin(Integer.parseInt(strs[1]));
outTuple.setMax(Integer.parseInt(strs[1]));
// 将结果写入上下文context.write(newText(strDate), outTuple);
  }
    }
publicstaticclassMinMaxReducerextendsReducer<Text, MinMaxWritable, Text, MinMaxWritable> {
privateMinMaxWritableresult=newMinMaxWritable();
@Overridepublicvoidreduce(Textkey, Iterable<MinMaxWritable>values, Contextcontext) 
throwsIOException, InterruptedException {
result.setMax(0);
result.setMin(0);
// 按key迭代输出value的值for (MinMaxWritableval : values) {
// 最小值放于结果集中if (result.getMin() ==0||val.getMin() <result.getMin()) {
result.setMin(val.getMin());
    }
// 最大值放于结果集中if (result.getMax() ==0||val.getMax() >result.getMax()) {
System.out.println("val.getMax(): "+val.getMax() +",,,,"+result.getMax());
result.setMax(val.getMax());
    }
    }
context.write(key, result);
  }
    }
publicstaticvoidmain(String[] args) throwsException {
Configurationconf=newConfiguration();
// String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();String[] otherArgs=newString[] { "/input/ch07/minmax", "/output/ch07/minmax" };
if (otherArgs.length!=2) {
System.err.println("Usage: MinMaxCountDriver <in> <out>");
System.exit(2);
  }
// Job job = new Job(conf, "StackOverflow Comment Date Min Max Count");Jobjob=Job.getInstance(conf);
job.setJarByClass(MinMaxValueDemo7_2_1.class);
job.setMapperClass(MinMaxMapper.class);
job.setCombinerClass(MinMaxReducer.class);
job.setReducerClass(MinMaxReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(MinMaxWritable.class);
FileInputFormat.addInputPath(job, newPath(otherArgs[0]));
FileOutputFormat.setOutputPath(job, newPath(otherArgs[1]));
System.exit(job.waitForCompletion(true) ?0 : 1);
    }
publicstaticclassMinMaxWritableimplementsWritable {
privateintmin;// 记录最小值privateintmax;// 记录最大值publicintgetMin() {
returnmin;
  }
publicvoidsetMin(intmin) {
this.min=min;
  }
publicintgetMax() {
returnmax;
  }
publicvoidsetMax(intmax) {
this.max=max;
  }
@OverridepublicvoidreadFields(DataInputin) throwsIOException {
min=in.readInt();
max=in.readInt();
  }
@Overridepublicvoidwrite(DataOutputout) throwsIOException {
out.writeInt(max);
out.writeInt(min);
    }
@OverridepublicStringtoString() {
returnmax+"\t"+min;
  }
    }
}

报错信息

java.lang.Exception: java.io.IOException: Mkdirs failed to create file:/output/ch07/minmax/_temporary/0/_temporary/attempt_local391816241_0001_r_000000_0 (exists=false, cwd=file:/home/zhangsan/Java_Eclipse/eclipse-workspace/MapReduce)
  at org.apache.hadoop.mapred.LocalJobRunner$Job.runTasks(LocalJobRunner.java:462)
  at org.apache.hadoop.mapred.LocalJobRunner$Job.run(LocalJobRunner.java:529)
Caused by: java.io.IOException: Mkdirs failed to create file:/output/ch07/minmax/_temporary/0/_temporary/attempt_local391816241_0001_r_000000_0 (exists=false, cwd=file:/home/zhangsan/Java_Eclipse/eclipse-workspace/MapReduce)
  at org.apache.hadoop.fs.ChecksumFileSystem.create(ChecksumFileSystem.java:449)
  at org.apache.hadoop.fs.ChecksumFileSystem.create(ChecksumFileSystem.java:435)
  at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:909)
  at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:890)
  at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:787)
  at org.apache.hadoop.mapreduce.lib.output.TextOutputFormat.getRecordWriter(TextOutputFormat.java:132)
  at org.apache.hadoop.mapred.ReduceTask$NewTrackingRecordWriter.<init>(ReduceTask.java:540)
  at org.apache.hadoop.mapred.ReduceTask.runNewReducer(ReduceTask.java:614)
  at org.apache.hadoop.mapred.ReduceTask.run(ReduceTask.java:389)
  at org.apache.hadoop.mapred.LocalJobRunner$Job$ReduceTaskRunnable.run(LocalJobRunner.java:319)
  at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
  at java.util.concurrent.FutureTask.run(FutureTask.java:266)
  at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
  at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
  at java.lang.Thread.run(Thread.java:748)
2022-09-21 20:42:24,059 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1360)) - Job job_local391816241_0001 running in uber mode : false
2022-09-21 20:42:24,062 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1367)) -  map 100% reduce 0%
2022-09-21 20:42:24,064 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1380)) - Job job_local391816241_0001 failed with state FAILED due to: NA
2022-09-21 20:42:24,080 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1385)) - Counters: 30
  File System Counters
  FILE: Number of bytes read=247
  FILE: Number of bytes written=269461
  FILE: Number of read operations=0
  FILE: Number of large read operations=0
  FILE: Number of write operations=0
  Map-Reduce Framework
  Map input records=8
  Map output records=8
  Map output bytes=128
  Map output materialized bytes=60
  Input split bytes=97
  Combine input records=8
  Combine output records=3
  Reduce input groups=0
  Reduce shuffle bytes=60
  Reduce input records=0
  Reduce output records=0
  Spilled Records=3
  Shuffled Maps =1
  Failed Shuffles=0
  Merged Map outputs=1
  GC time elapsed (ms)=0
  Total committed heap usage (bytes)=193986560
  Shuffle Errors
  BAD_ID=0
  CONNECTION=0
  IO_ERROR=0
  WRONG_LENGTH=0
  WRONG_MAP=0
  WRONG_REDUCE=0
  File Input Format Counters 
  Bytes Read=96
  File Output Format Counters 
  Bytes Written=0


2. 查找资料

网上有一个帖子提到了这个报错信息


[链接]


https://community.cloudera.com/t5/Support-Questions/MKDirs-failed-to-create-file/td-p/35041


根据[@snm1523]的回答,我尝试将 mapred-site.xml 添加如下内容

<property>
    <name>mapreduce.jobtracker.address</name>
    <value>localhost:9101</value>
</property>


3. 原因分析


输出路径不能 create ,那就先创建输出路径


  • 创建输出路径目录/output
zhangsan@hadoop01:/$ sudomkdir /output
[sudo] zhangsan 的密码: 
zhangsan@hadoop01:/$ ll | grep output
drwxr-xr-x   2 root root  409692120:43 output/


依旧跟前面一样的报错信息


创建了路径还是报错,那应该是涉及到`权限问题`


  • 修改 /output 目录权限为 当前用户 「即hadoop安装目录所在的所有者」
zhangsan@hadoop01:/$ sudochown-R zhangsan:zhangsan output/
zhangsan@hadoop01:/$ ll | grep output
drwxr-xr-x   2 zhangsan  zhangsan   409692120:43 output/


重新执行MR程序


  • 运行成功
2022-09-2120:44:53,945 INFO  [Thread-15] mapred.LocalJobRunner (LocalJobRunner.java:runTasks(456)) - reduce task executor complete.
2022-09-2120:44:54,597 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1360)) - Job job_local2141955672_0001 running in uber mode : false2022-09-2120:44:54,600 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1367)) -  map 100% reduce 100%
2022-09-2120:44:54,602 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1378)) - Job job_local2141955672_0001 completed successfully
2022-09-2120:44:54,615 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1385)) - Counters: 30  File System Counters
  FILE: Number of bytes read=646  FILE: Number of bytes written=541974  FILE: Number of read operations=0  FILE: Number of large read operations=0  FILE: Number of writeoperations=0  Map-Reduce Framework
  Map input records=8  Map output records=8  Map output bytes=128  Map output materialized bytes=60  Input split bytes=97  Combine input records=8  Combine output records=3  Reduce input groups=3  Reduce shuffle bytes=60  Reduce input records=3  Reduce output records=3  Spilled Records=6  Shuffled Maps =1  Failed Shuffles=0  Merged Map outputs=1  GC time elapsed (ms)=0  Total committed heap usage (bytes)=387973120  Shuffle Errors
BAD_ID=0CONNECTION=0IO_ERROR=0WRONG_LENGTH=0WRONG_MAP=0WRONG_REDUCE=0  File Input Format Counters 
  Bytes Read=96  File Output Format Counters 
  Bytes Written=60


  • 查看结果
zhangsan@hadoop01:/output/ch07/minmax$ ll总用量 20drwxrwxr-x 2 zhangsan zhangsan 409692120:44 ./
drwxrwxr-x 3 zhangsan zhangsan 409692120:44 ../
-rw-r--r--1 zhangsan zhangsan   4892120:44 part-r-00000
-rw-r--r--1 zhangsan zhangsan   1292120:44 .part-r-00000.crc
-rw-r--r--1 zhangsan zhangsan    092120:44 _SUCCESS
-rw-r--r--1 zhangsan zhangsan    892120:44 ._SUCCESS.crc


4. 参考

https://community.cloudera.com/t5/Support-Questions/MKDirs-failed-to-create-file/td-p/35041


顺利结束

目录
相关文章
|
分布式计算 Ubuntu IDE
MapReduce关于类型转换报错记录
MapReduce关于类型转换报错记录
115 0
MapReduce关于类型转换报错记录
|
分布式计算 Ubuntu IDE
执行MapReduce报错:无法分配内存 (errno=12)
执行MapReduce报错:无法分配内存 (errno=12)
242 0
执行MapReduce报错:无法分配内存 (errno=12)
|
分布式计算 资源调度 Java
执行MapReduce的Jar包报错:Exception in thread main ExitCodeException exitCode=1
执行MapReduce的Jar包报错:Exception in thread main ExitCodeException exitCode=1
156 0
执行MapReduce的Jar包报错:Exception in thread main ExitCodeException exitCode=1
|
8月前
|
分布式计算 Hadoop
Hadoop系列 mapreduce 原理分析
Hadoop系列 mapreduce 原理分析
92 1
|
3月前
|
分布式计算 资源调度 Hadoop
Hadoop-10-HDFS集群 Java实现MapReduce WordCount计算 Hadoop序列化 编写Mapper和Reducer和Driver 附带POM 详细代码 图文等内容
Hadoop-10-HDFS集群 Java实现MapReduce WordCount计算 Hadoop序列化 编写Mapper和Reducer和Driver 附带POM 详细代码 图文等内容
143 3
|
7月前
|
分布式计算 Hadoop Java
Hadoop MapReduce编程
该教程指导编写Hadoop MapReduce程序处理天气数据。任务包括计算每个城市ID的最高、最低气温、气温出现次数和平均气温。在读取数据时需忽略表头,且数据应为整数。教程中提供了环境变量设置、Java编译、jar包创建及MapReduce执行的步骤说明,但假设读者已具备基础操作技能。此外,还提到一个扩展练习,通过分区功能将具有相同尾数的数字分组到不同文件。
74 1
|
7月前
|
数据采集 SQL 分布式计算
|
8月前
|
分布式计算 Hadoop Java
Hadoop MapReduce 调优参数
对于 Hadoop v3.1.3,针对三台4核4G服务器的MapReduce调优参数包括:`mapreduce.reduce.shuffle.parallelcopies`设为10以加速Shuffle,`mapreduce.reduce.shuffle.input.buffer.percent`和`mapreduce.reduce.shuffle.merge.percent`分别设为0.8以减少磁盘IO。
88 1
|
8月前
|
分布式计算 并行计算 搜索推荐
Hadoop MapReduce计算框架
【5月更文挑战第10天】HadoopMapReduce计算框架
67 3