ElasticStack:使用FileBeat、Logstash、Elasticsearch、Kibana收集清洗存储查看分析数据

简介: ElasticStack:使用FileBeat、Logstash、Elasticsearch、Kibana收集清洗存储查看分析数据

借用ElasticStack的一张图,很好的阐述了LEK的在数据处理中的位置

2.png

一、环境:

版本均未5.2.0

https://www.elastic.co/cn/downloads/past-releases


1、filebeat:

https://www.elastic.co/cn/downloads/past-releases/filebeat-5-2-0

2、logstash

https://www.elastic.co/cn/downloads/past-releases/logstash-5-2-0

3、elasticsearch:

https://www.elastic.co/cn/downloads/past-releases/elasticsearch-5-2-0

4、kibana:

https://www.elastic.co/cn/downloads/past-releases/kibana-5-2-0

二、日志准备

使用python脚本定时生成模拟日志


generator_log.py

# -*- encoding:utf-8 -*-

import time
from chinesename import ChineseName

cn = ChineseName()

while True:
    now = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
    message = "{} {}\n".format(now, cn.getName())
    print(message)

    with open("demo.log", "a", encoding="utf-8") as f:
        f.write(message)

    # 每3秒生成一条日志     
    time.sleep(3)

日志示例(日期 姓名):

2019-06-13 18:01:31 容休

三、filebeat

1、配置

修改配置文件filebeat.yml

可以选择直接将数据传入Elasticsearch,也可以传入Logstash处理

filebeat.prospectors:

- input_type: log
paths:
# 配置需要收集的文件地址
- /var/log/*.log

#-------------------------- Elasticsearch output ------------------------------
# output.elasticsearch:
# hosts: ["localhost:9200"]

#----------------------------- Logstash output --------------------------------
output.logstash:
hosts: ["localhost:5044"]

2、启动:

./filebeat -e -c filebeat.yml -d "publish"

参考:开始使用Filebeat

3.png

四、logstash

1、匹配说明

(1)内置匹配

%{SYNTAX:SEMANTIC}

(2)ruby正则

(?<name>pattern)

关于Ruby的正则:

Ruby 正则表达式: https://www.runoob.com/ruby/ruby-regular-expressions.html

Ruby 正则匹配测试: https://rubular.com/


2、配置

新建一个文件夹存放自定义匹配模式

$ mkdir ./patterns
$ cat ./patterns/datetime.re
DATETIME \d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2}

es-pipeline.conf

input {
beats {
port => "5044"
}
}
filter {
grok {
patterns_dir => ["./patterns"]
match => {
"message" => "%{DATETIME:logdate} (?<text>(.*))"
}
remove_field => "message"
}
date {
match => ["logdate", "yyyy-MM-dd HH:mm:ss"]
}
}
output {
stdout { codec => rubydebug }
elasticsearch {
hosts => [ "localhost:9200" ]
}
}

3、启动logstash

# 解析配置文件并报告任何错误
$ ./bin/logstash -f es-pipeline.conf --config.test_and_exit

# 启用自动配置加载
$ ./bin/logstash -f es-pipeline.conf --config.reload.automatic

4.png

五、kibana中查询结果

1、启动

$ elasticsearch
$ kibana

2、查询

GET /logstash-2019.06.13/_search
{
"sort": [
{
"@timestamp": {
"order": "desc"
}
}
]
}

# 查询结果
{
"_index": "logstash-2019.06.13",
"_type": "log",
"_id": "AWtQTwv8vaBpxF8s4wUp",
"_score": null,
"_source": {
"@timestamp": "2019-06-13T10:08:02.000Z",
"offset": 197738,
"logdate": "2019-06-13 18:08:02",
"@version": "1",
"beat": {
"hostname": "bogon",
"name": "bogon",
"version": "5.2.0"
},
"input_type": "log",
"host": "bogon",
"source": "/Users/qmp/Desktop/log/demo.log",
"text": "伯镟",
"type": "log",
"tags": [
"beats_input_codec_plain_applied"
]
},
"sort": [
1560420482000
]
}

图形化查看日志数量曲线图

5.png

参考

使用Logstash filter grok过滤日志文件

Logstash使用grok进行日志过滤

Logstash介绍


            </div>
相关实践学习
以电商场景为例搭建AI语义搜索应用
本实验旨在通过阿里云Elasticsearch结合阿里云搜索开发工作台AI模型服务,构建一个高效、精准的语义搜索系统,模拟电商场景,深入理解AI搜索技术原理并掌握其实现过程。
ElasticSearch 最新快速入门教程
本课程由千锋教育提供。全文搜索的需求非常大。而开源的解决办法Elasricsearch(Elastic)就是一个非常好的工具。目前是全文搜索引擎的首选。本系列教程由浅入深讲解了在CentOS7系统下如何搭建ElasticSearch,如何使用Kibana实现各种方式的搜索并详细分析了搜索的原理,最后讲解了在Java应用中如何集成ElasticSearch并实现搜索。 &nbsp;
目录
相关文章
|
自然语言处理 API 索引
Elasticsearch Analyzer原理分析并实现中文分词
Elasticsearch Analyzer原理分析并实现中文分词
350 0
|
搜索推荐 Java 数据处理
Elasticsearch搜索分析引擎本地部署与远程访问
Elasticsearch搜索分析引擎本地部署与远程访问
|
9月前
|
存储 SQL Apache
为什么 Apache Doris 是比 Elasticsearch 更好的实时分析替代方案?
本文将从技术选型的视角,从开放性、系统架构、实时写入、实时存储、实时查询等多方面,深入分析 Apache Doris 与 Elasticsearch 的能力差异及性能表现
915 17
为什么 Apache Doris 是比 Elasticsearch 更好的实时分析替代方案?
|
弹性计算 运维 Serverless
超值选择:阿里云Elasticsearch Serverless在企业数据检索与分析中的高性能与灵活性
本文介绍了阿里云Elasticsearch Serverless服务的高性价比与高度弹性灵活性。
524 8
|
存储 SQL 监控
|
运维 监控 安全
|
存储 缓存 自然语言处理
深度解析ElasticSearch:构建高效搜索与分析的基石
【9月更文挑战第8天】在数据爆炸的时代,如何快速、准确地从海量数据中检索出有价值的信息成为了企业面临的重要挑战。ElasticSearch,作为一款基于Lucene的开源分布式搜索和分析引擎,凭借其强大的实时搜索、分析和扩展能力,成为了众多企业的首选。本文将深入解析ElasticSearch的核心原理、架构设计及优化实践,帮助读者全面理解这一强大的工具。
675 8
|
定位技术
Elasticsearch之基于地理位置进行聚合分析
Elasticsearch之基于地理位置进行聚合分析
333 0
|
存储 数据可视化 数据挖掘
使用Elasticsearch进行实时数据分析与预测
【8月更文第28天】Elasticsearch 是一个分布式的、RESTful 风格的搜索和分析引擎,它能够实时地存储、检索以及分析大规模的数据集。结合 Logstash 和 Kibana,它们共同构成了 Elastic Stack,这是一套强大的工具组合,适用于收集、存储、分析和可视化数据。
590 0
|
运维 监控 Java
在大数据场景下,Elasticsearch作为分布式搜索与分析引擎,因其扩展性和易用性成为全文检索首选。
【7月更文挑战第1天】在大数据场景下,Elasticsearch作为分布式搜索与分析引擎,因其扩展性和易用性成为全文检索首选。本文讲解如何在Java中集成Elasticsearch,包括安装配置、使用RestHighLevelClient连接、创建索引和文档操作,以及全文检索查询。此外,还涉及高级查询、性能优化和故障排查,帮助开发者高效处理非结构化数据。
224 0

热门文章

最新文章