ECCV 2024:视觉定位新SOTA!华人团队开源革新框架SegVG,边界框转为分割信号
视觉定位任务旨在通过文本-图像对检测特定目标的边界框,但其监督信号稀疏,难以达到最优性能。ECCV 2024提出的SegVG方法将边界框标注转化为分割信号,提供像素级监督,显著提升定位精度。该方法采用多层多任务编码器-解码器架构和三重对齐模块,有效缓解特征域差异问题。实验表明,SegVG在多个数据集上超越了先前的SOTA方法,特别是在RefCOCO和Visual Genome数据集上分别提升了3%和超过5%的准确率。尽管如此,SegVG也存在计算复杂度高、依赖高质量标注数据及可解释性不足等缺点。