【Java并发】ReadWriteLock读写锁的使用

简介: 【Java并发】ReadWriteLock读写锁的使用
说到Java并发编程,很多开发第一个想到同时也是经常常用的肯定是Synchronized,但是小编这里提出一个问题,Synchronized存在明显的一个性能问题就是读与读之间互斥,简言之就是,我们编程想要实现的最好效果是,可以做到读和读互不影响,读和写互斥,写和写互斥,提高读写的效率,如何实现呢?

Java并发包中ReadWriteLock是一个接口,主要有两个方法,如下:

public interface ReadWriteLock {
    /**
     * Returns the lock used for reading.
     *
     * @return the lock used for reading
     */
    Lock readLock();

    /**
     * Returns the lock used for writing.
     *
     * @return the lock used for writing
     */
    Lock writeLock();
}

ReadWriteLock管理一组锁,一个是只读的锁,一个是写锁。
Java并发库中ReetrantReadWriteLock实现了ReadWriteLock接口并添加了可重入的特性。
在具体讲解ReetrantReadWriteLock的使用方法前,我们有必要先对其几个特性进行一些深入学习了解。

1. ReetrantReadWriteLock特性说明

1.1 获取锁顺序

  • 非公平模式(默认)

当以非公平初始化时,读锁和写锁的获取的顺序是不确定的。非公平锁主张竞争获取,可能会延缓一个或多个读或写线程,但是会比公平锁有更高的吞吐量。

  • 公平模式

当以公平模式初始化时,线程将会以队列的顺序获取锁。当当前线程释放锁后,等待时间最长的写锁线程就会被分配写锁;或者有一组读线程组等待时间比写线程长,那么这组读线程组将会被分配读锁。

1.2 可重入

什么是可重入锁,不可重入锁呢?"重入"字面意思已经很明显了,就是可以重新进入。可重入锁,就是说一个线程在获取某个锁后,还可以继续获取该锁,即允许一个线程多次获取同一个锁。比如synchronized内置锁就是可重入的,如果A类有2个synchornized方法method1和method2,那么method1调用method2是允许的。显然重入锁给编程带来了极大的方便。假如内置锁不是可重入的,那么导致的问题是:1个类的synchornized方法不能调用本类其他synchornized方法,也不能调用父类中的synchornized方法。与内置锁对应,JDK提供的显示锁ReentrantLock也是可以重入的,这里通过一个例子着重说下可重入锁的释放需要的事儿。

package test;

import java.util.concurrent.locks.ReentrantReadWriteLock;

public class Test1 {

    public static void main(String[] args) throws InterruptedException {
        final ReentrantReadWriteLock  lock = new ReentrantReadWriteLock ();
        Thread t = new Thread(new Runnable() {
            @Override
            public void run() {
                lock.writeLock().lock();
                System.out.println("Thread real execute");
                lock.writeLock().unlock();
            }
        });

        lock.writeLock().lock();
        lock.writeLock().lock();
        t.start();
        Thread.sleep(200);
        
        System.out.println("realse one once");
        lock.writeLock().unlock();
    }

}

运行结果.png
从运行结果中,可以看到,程序并未执行线程的run方法,由此我们可知,上面的代码会出现死锁,因为主线程2次获取了锁,但是却只释放1次锁,导致线程t永远也不能获取锁。一个线程获取多少次锁,就必须释放多少次锁。这对于内置锁也是适用的,每一次进入和离开synchornized方法(代码块),就是一次完整的锁获取和释放。
再次添加一次unlock之后的运行结果.png

1.3 锁降级

要实现一个读写锁,需要考虑很多细节,其中之一就是锁升级和锁降级的问题。什么是升级和降级呢?ReadWriteLock的javadoc有一段话:

Can the write lock be downgraded to a read lock without allowing an intervening writer? Can a read lock be upgraded to a write lock, in preference to other waiting readers or writers?

翻译过来的结果是:在不允许中间写入的情况下,写入锁可以降级为读锁吗?读锁是否可以升级为写锁,优先于其他等待的读取或写入操作?简言之就是说,锁降级:从写锁变成读锁;锁升级:从读锁变成写锁,ReadWriteLock是否支持呢?让我们带着疑问,进行一些Demo 测试代码验证。

Test Code 1

/**
 *Test Code 1
 **/
package test;

import java.util.concurrent.locks.ReentrantReadWriteLock;

public class Test1 {

    public static void main(String[] args) {
        ReentrantReadWriteLock rtLock = new ReentrantReadWriteLock();
        rtLock.readLock().lock();
        System.out.println("get readLock.");
        rtLock.writeLock().lock();
        System.out.println("blocking");
    }
}

Test Code 1 Result

TestCode1 Result.png

结论:上面的测试代码会产生死锁,因为同一个线程中,在没有释放读锁的情况下,就去申请写锁,这属于锁升级,ReentrantReadWriteLock是不支持的

Test Code 2

/**
 *Test Code 2
 **/
package test;

import java.util.concurrent.locks.ReentrantReadWriteLock;

public class Test2 {

    public static void main(String[] args) {
        ReentrantReadWriteLock rtLock = new ReentrantReadWriteLock();  
        rtLock.writeLock().lock();  
        System.out.println("writeLock");  
          
        rtLock.readLock().lock();  
        System.out.println("get read lock");  
    }
}

Test Code 2 Result

TestCode2 Result.png
结论:ReentrantReadWriteLock支持锁降级,上面代码不会产生死锁。这段代码虽然不会导致死锁,但没有正确的释放锁。从写锁降级成读锁,并不会自动释放当前线程获取的写锁,仍然需要显示的释放,否则别的线程永远也获取不到写锁。

2. ReetrantReadWriteLock对比使用

2.1 Synchronized实现

在使用ReetrantReadWriteLock实现锁机制前,我们先看一下,多线程同时读取文件时,用synchronized实现的效果

package test;

/**
 * 
 * synchronized实现
 * @author itbird
 *
 */
public class ReadAndWriteLockTest {

    public synchronized static void get(Thread thread) {
        System.out.println("start time:" + System.currentTimeMillis());
        for (int i = 0; i < 5; i++) {
            try {
                Thread.sleep(20);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println(thread.getName() + ":正在进行读操作……");
        }
        System.out.println(thread.getName() + ":读操作完毕!");
        System.out.println("end time:" + System.currentTimeMillis());
    }

    public static void main(String[] args) {
        new Thread(new Runnable() {
            @Override
            public void run() {
                get(Thread.currentThread());
            }
        }).start();

        new Thread(new Runnable() {
            @Override
            public void run() {
                get(Thread.currentThread());
            }
        }).start();
    }

}

让我们看一下运行结果:
synchronized实现的效果结果.png
从运行结果可以看出,两个线程的读操作是顺序执行的,整个过程大概耗时200ms。

2.2 ReetrantReadWriteLock实现

package test;

import java.util.concurrent.locks.ReentrantReadWriteLock;

/**
 * 
 * ReetrantReadWriteLock实现
 * @author itbird
 *
 */
public class ReadAndWriteLockTest {
    ReentrantReadWriteLock lock = new ReentrantReadWriteLock();

    public static void get(Thread thread) {
        lock.readLock().lock();
        System.out.println("start time:" + System.currentTimeMillis());
        for (int i = 0; i < 5; i++) {
            try {
                Thread.sleep(20);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println(thread.getName() + ":正在进行读操作……");
        }
        System.out.println(thread.getName() + ":读操作完毕!");
        System.out.println("end time:" + System.currentTimeMillis());
        lock.readLock().unlock();
    }

    public static void main(String[] args) {
        new Thread(new Runnable() {
            @Override
            public void run() {
                get(Thread.currentThread());
            }
        }).start();

        new Thread(new Runnable() {
            @Override
            public void run() {
                get(Thread.currentThread());
            }
        }).start();
    }

}

让我们看一下运行结果:
ReetrantReadWriteLock实现.png
从运行结果可以看出,两个线程的读操作是同时执行的,整个过程大概耗时100ms。
通过两次实验的对比,我们可以看出来,ReetrantReadWriteLock的效率明显高于Synchronized关键字。

3. ReetrantReadWriteLock读写锁互斥关系

通过上面的测试代码,我们也可以延伸得出一个结论,ReetrantReadWriteLock读锁使用共享模式,即:同时可以有多个线程并发地读数据。但是另一个问题来了,写锁之间是共享模式还是互斥模式?读写锁之间是共享模式还是互斥模式呢?下面让我们通过Demo进行一一验证吧。

3.1 ReetrantReadWriteLock读写锁关系

package test;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.locks.ReentrantReadWriteLock;

/**
 * 
 * ReetrantReadWriteLock实现
 * @author itbird
 *
 */
public class ReadAndWriteLockTest {

    public static ReentrantReadWriteLock lock = new ReentrantReadWriteLock();

    public static void main(String[] args) {
        //同时读、写
        ExecutorService service = Executors.newCachedThreadPool();
        service.execute(new Runnable() {
            @Override
            public void run() {
                readFile(Thread.currentThread());
            }
        });
        service.execute(new Runnable() {
            @Override
            public void run() {
                writeFile(Thread.currentThread());
            }
        });
    }

    // 读操作
    public static void readFile(Thread thread) {
        lock.readLock().lock();
        boolean readLock = lock.isWriteLocked();
        if (!readLock) {
            System.out.println("当前为读锁!");
        }
        try {
            for (int i = 0; i < 5; i++) {
                try {
                    Thread.sleep(20);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println(thread.getName() + ":正在进行读操作……");
            }
            System.out.println(thread.getName() + ":读操作完毕!");
        } finally {
            System.out.println("释放读锁!");
            lock.readLock().unlock();
        }
    }

    // 写操作
    public static void writeFile(Thread thread) {
        lock.writeLock().lock();
        boolean writeLock = lock.isWriteLocked();
        if (writeLock) {
            System.out.println("当前为写锁!");
        }
        try {
            for (int i = 0; i < 5; i++) {
                try {
                    Thread.sleep(20);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println(thread.getName() + ":正在进行写操作……");
            }
            System.out.println(thread.getName() + ":写操作完毕!");
        } finally {
            System.out.println("释放写锁!");
            lock.writeLock().unlock();
        }
    }
}

运行结果:
运行结果.png
结论:读写锁的实现必须确保写操作对读操作的内存影响。换句话说,一个获得了读锁的线程必须能看到前一个释放的写锁所更新的内容,读写锁之间为互斥。

3.2 ReetrantReadWriteLock写锁关系

package test;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.locks.ReentrantReadWriteLock;

/**
 * 
 * ReetrantReadWriteLock实现
 * @author itbird
 *
 */
public class ReadAndWriteLockTest {

    public static ReentrantReadWriteLock lock = new ReentrantReadWriteLock();

    public static void main(String[] args) {
        //同时写
        ExecutorService service = Executors.newCachedThreadPool();
        service.execute(new Runnable() {
            @Override
            public void run() {
                writeFile(Thread.currentThread());
            }
        });
        service.execute(new Runnable() {
            @Override
            public void run() {
                writeFile(Thread.currentThread());
            }
        });
    }

    // 读操作
    public static void readFile(Thread thread) {
        lock.readLock().lock();
        boolean readLock = lock.isWriteLocked();
        if (!readLock) {
            System.out.println("当前为读锁!");
        }
        try {
            for (int i = 0; i < 5; i++) {
                try {
                    Thread.sleep(20);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println(thread.getName() + ":正在进行读操作……");
            }
            System.out.println(thread.getName() + ":读操作完毕!");
        } finally {
            System.out.println("释放读锁!");
            lock.readLock().unlock();
        }
    }

    // 写操作
    public static void writeFile(Thread thread) {
        lock.writeLock().lock();
        boolean writeLock = lock.isWriteLocked();
        if (writeLock) {
            System.out.println("当前为写锁!");
        }
        try {
            for (int i = 0; i < 5; i++) {
                try {
                    Thread.sleep(20);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println(thread.getName() + ":正在进行写操作……");
            }
            System.out.println(thread.getName() + ":写操作完毕!");
        } finally {
            System.out.println("释放写锁!");
            lock.writeLock().unlock();
        }
    }
}

运行结果:
运行结果.png

4. 总结

1.Java并发库中ReetrantReadWriteLock实现了ReadWriteLock接口并添加了可重入的特性
2.ReetrantReadWriteLock读写锁的效率明显高于synchronized关键字
3.ReetrantReadWriteLock读写锁的实现中,读锁使用共享模式;写锁使用独占模式,换句话说,读锁可以在没有写锁的时候被多个线程同时持有,写锁是独占的
4.ReetrantReadWriteLock读写锁的实现中,需要注意的,当有读锁时,写锁就不能获得;而当有写锁时,除了获得写锁的这个线程可以获得读锁外,其他线程不能获得读锁

目录
相关文章
|
6天前
|
存储 缓存 安全
【Java面试题汇总】多线程、JUC、锁篇(2023版)
线程和进程的区别、CAS的ABA问题、AQS、哪些地方使用了CAS、怎么保证线程安全、线程同步方式、synchronized的用法及原理、Lock、volatile、线程的六个状态、ThreadLocal、线程通信方式、创建方式、两种创建线程池的方法、线程池设置合适的线程数、线程安全的集合?ConcurrentHashMap、JUC
【Java面试题汇总】多线程、JUC、锁篇(2023版)
|
2天前
|
Java 数据库
JAVA并发编程-一文看懂全部锁机制
曾几何时,面试官问:java都有哪些锁?小白,一脸无辜:用过的有synchronized,其他不清楚。面试官:回去等通知! 今天我们庖丁解牛说说,各种锁有什么区别、什么场景可以用,通俗直白的分析,让小白再也不怕面试官八股文拷打。
|
2天前
|
安全 Java 开发者
Java并发编程中的锁机制解析
本文深入探讨了Java中用于管理多线程同步的关键工具——锁机制。通过分析synchronized关键字和ReentrantLock类等核心概念,揭示了它们在构建线程安全应用中的重要性。同时,文章还讨论了锁机制的高级特性,如公平性、类锁和对象锁的区别,以及锁的优化技术如锁粗化和锁消除。此外,指出了在高并发环境下锁竞争可能导致的问题,并提出了减少锁持有时间和使用无锁编程等策略来优化性能的建议。最后,强调了理解和正确使用Java锁机制对于开发高效、可靠并发应用程序的重要性。
12 3
|
22天前
|
存储 Java
Java锁是什么?简单了解
在高并发环境下,锁是Java中至关重要的概念。锁或互斥是一种同步机制,用于限制多线程环境下的资源访问,确保排他性和并发控制。例如,超市储物柜仅能存放一个物品,若三人同时使用,则需通过锁机制确保每次只有一个线程访问。Java中可以通过`synchronized`关键字实现加锁,确保关键代码段的原子性,避免数据不一致问题。正确使用锁可有效提升程序的稳定性和安全性。
Java锁是什么?简单了解
|
23天前
|
小程序 Java 开发工具
【Java】@Transactional事务套着ReentrantLock锁,锁竟然失效超卖了
本文通过一个生动的例子,探讨了Java中加锁仍可能出现超卖问题的原因及解决方案。作者“JavaDog程序狗”通过模拟空调租赁场景,详细解析了超卖现象及其背后的多线程并发问题。文章介绍了四种解决超卖的方法:乐观锁、悲观锁、分布式锁以及代码级锁,并重点讨论了ReentrantLock的使用。此外,还分析了事务套锁失效的原因及解决办法,强调了事务边界的重要性。
46 2
【Java】@Transactional事务套着ReentrantLock锁,锁竟然失效超卖了
|
14天前
|
Oracle Java 关系型数据库
【颠覆性升级】JDK 22:超级构造器与区域锁,重塑Java编程的两大基石!
【9月更文挑战第6天】JDK 22的发布标志着Java编程语言在性能和灵活性方面迈出了重要的一步。超级构造器和区域锁这两大基石的引入,不仅简化了代码设计,提高了开发效率,还优化了垃圾收集器的性能,降低了应用延迟。这些改进不仅展示了Oracle在Java生态系统中的持续改进和创新精神,也为广大Java开发者提供了更多的可能性和便利。我们有理由相信,在未来的Java编程中,这些新特性将发挥越来越重要的作用,推动Java技术不断向前发展。
|
24天前
|
Java 开发者
Java多线程教程:使用ReentrantLock实现高级锁功能
Java多线程教程:使用ReentrantLock实现高级锁功能
23 1
|
29天前
|
存储 Java
Java 中 ConcurrentHashMap 的并发级别
【8月更文挑战第22天】
32 5
|
29天前
|
存储 算法 Java
Java 中的同步集合和并发集合
【8月更文挑战第22天】
21 5
|
27天前
|
缓存 Java 调度
【Java 并发秘籍】线程池大作战:揭秘 JDK 中的线程池家族!
【8月更文挑战第24天】Java的并发库提供多种线程池以应对不同的多线程编程需求。本文通过实例介绍了四种主要线程池:固定大小线程池、可缓存线程池、单一线程线程池及定时任务线程池。固定大小线程池通过预设线程数管理任务队列;可缓存线程池能根据需要动态调整线程数量;单一线程线程池确保任务顺序执行;定时任务线程池支持周期性或延时任务调度。了解并正确选用这些线程池有助于提高程序效率和资源利用率。
33 2