PIFuHD简介:使用AI从2D图像生成人的3D高分辨率重建

简介: PIFuHD简介:使用AI从2D图像生成人的3D高分辨率重建


image.png

关于这篇新文章的最酷的事情是,他们在Google colab上提供了一个演示,您可以在其中轻松地自己尝试一下,正如我将在本文中展示的那样!但首先,让我们看看他们是如何做到的。

640.png

Facebook和南加州大学的研究人员最近推出了一篇名为“ PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization”的新论文。简而言之,它使用某人的2D图像来重构该人的3D高分辨率版本。我们的主要目标是对穿着衣服的人进行高保真3d重建,并获得详细信息,例如手指,面部特征和衣服褶皱,正如我们在此图中看到的那样。因为的原因,目前的方法没有使用全高分辨率图像,所以它们降低了图像的尺寸,并丢失了在3D中创建高分辨率细节的重要信息,但是看起来还是不错的。

640.png

PiFuHD通过两步解决问题来实现这一目标。首先,以较低的分辨率(缩小比例)对模型进行训练,以专注于整体推理。这样,它可以覆盖图片的更大空间背景上下文。然后,使用这些上下文信息,模型通过观察图像和更高分辨率的第一个输出来估计人的详细几何形状。粗略层通过对图像进行下采样并将其输入到PIFu模型中来捕获全局3D结构,而高分辨率的详细信息是通过在相似的轻量级PIFu网络中使用这些第一个3D输出作为高分辨率输入来添加的。由于精细层级将第一层级的特征作为3d嵌入,因此不需要以更高的分辨率查看整个图像,从而可以在没有背景的情况下提供此人的高分辨率图像。具有较低分辨率的背景信息和较高分辨率的模型解决了先前方法遇到的计算时间问题。

640.png

正像图中展示的,需要多层PIFu才能获得高分辨率3D模型,但是使用单层PIFu可以更快地创建准确的模型。这种新方法是精确的,并且使用这种双向模型使它在现阶段的内存限制下可以成功运行。下面是使用这种技术取得的一些更令人印象深刻的结果……

640.png

他们做了一个公开演示,在那里你可以简单地上传你的图片并在谷歌colab上看到结果!只需要一分钟左右。这只是这篇新论文的一个简单概述。

下面是这个演示的链接。

论文地址: https://arxiv.org/pdf/2004.00452.pdf

colab演示: https://colab.research.google.com/drive/11z58bl3meSzo6kFqkahMa35G5jmh2Wgt

源代码: https://github.com/facebookresearch/pifuhd


目录
相关文章
|
2月前
|
机器学习/深度学习 人工智能 并行计算
"震撼!CLIP模型:OpenAI的跨模态奇迹,让图像与文字共舞,解锁AI理解新纪元!"
【10月更文挑战第14天】CLIP是由OpenAI在2021年推出的一种图像和文本联合表示学习模型,通过对比学习方法预训练,能有效理解图像与文本的关系。该模型由图像编码器和文本编码器组成,分别处理图像和文本数据,通过共享向量空间实现信息融合。CLIP利用大规模图像-文本对数据集进行训练,能够实现zero-shot图像分类、文本-图像检索等多种任务,展现出强大的跨模态理解能力。
177 2
|
2月前
|
人工智能 开发者
MidJourney 替代品:为什么 FLUX.1 是终极 AI 图像生成工具
MidJourney 是目前流行的 AI 驱动图像生成工具,以其艺术风格和易用性闻名。然而,随着技术进步,其他模型如 FLUX.1、DALL·E 3 和 Stable Diffusion 3 也崭露头角,提供了更多定制选项和高质量输出。其中,FLUX.1 以其开源性质、卓越图像质量和开发者友好性脱颖而出,成为 MidJourney 的有力替代品。选择合适的工具应基于具体需求,FLUX.1 在灵活性和高性能方面表现优异。
|
2月前
|
人工智能 Serverless
AI助理精准匹配------助力快速搭建Stable Difussion图像生成应用
【10月更文挑战第7天】过去在阿里云社区搭建Stable Diffusion图像生成应用需查阅在线实验室或官方文档,耗时且不便。现阿里云AI助理提供精准匹配服务,直接在首页询问AI助理即可获取详细部署步骤,简化了操作流程,提高了效率。用户可按AI助理提供的步骤快速完成应用创建、参数设置、应用部署及资源释放等操作,轻松体验Stable Diffusion图像生成功能。
|
3天前
|
机器学习/深度学习 人工智能
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
SNOOPI是一个创新的AI文本到图像生成框架,通过增强单步扩散模型的指导,显著提升模型性能和控制力。该框架包括PG-SB和NASA两种技术,分别用于增强训练稳定性和整合负面提示。SNOOPI在多个评估指标上超越基线模型,尤其在HPSv2得分达到31.08,成为单步扩散模型的新标杆。
36 10
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
|
3天前
|
人工智能 搜索推荐 开发者
Aurora:xAI 为 Grok AI 推出新的图像生成模型,xAI Premium 用户可无限制访问
Aurora是xAI为Grok AI助手推出的新图像生成模型,专注于生成高逼真度的图像,特别是在人物和风景图像方面。该模型支持文本到图像的生成,并能处理包括公共人物和版权形象在内的多种图像生成请求。Aurora的可用性因用户等级而异,免费用户每天能生成三张图像,而Premium用户则可享受无限制访问。
33 11
Aurora:xAI 为 Grok AI 推出新的图像生成模型,xAI Premium 用户可无限制访问
|
10天前
|
机器学习/深度学习 人工智能 编解码
OminiControl:AI图像生成框架,实现图像主题控制和空间精确控制
OminiControl 是一个高度通用且参数高效的 AI 图像生成框架,专为扩散变换器模型设计,能够实现图像主题控制和空间精确控制。该框架通过引入极少量的额外参数(0.1%),支持主题驱动控制和空间对齐控制,适用于多种图像生成任务。
47 10
OminiControl:AI图像生成框架,实现图像主题控制和空间精确控制
|
8天前
|
人工智能 vr&ar
GeneMAN:上海AI Lab联合北大等高校推出的3D人体模型创建框架
GeneMAN是由上海AI实验室、北京大学、南洋理工大学和上海交通大学联合推出的3D人体模型创建框架。该框架能够从单张图片中生成高保真度的3D人体模型,适用于多种应用场景,如虚拟试衣、游戏和娱乐、增强现实和虚拟现实等。
30 7
GeneMAN:上海AI Lab联合北大等高校推出的3D人体模型创建框架
|
9天前
|
Web App开发 机器学习/深度学习 人工智能
Magic Copy:开源的 AI 抠图工具,在浏览器中自动识别图像进行抠图
Magic Copy 是一款开源的 AI 抠图工具,支持 Chrome 浏览器扩展。它基于 Meta 的 Segment Anything Model 技术,能够自动识别图像中的前景对象并提取出来,简化用户从图片中提取特定元素的过程,提高工作效率。
43 7
Magic Copy:开源的 AI 抠图工具,在浏览器中自动识别图像进行抠图
|
22天前
|
机器学习/深度学习 人工智能 自然语言处理
Documind:开源 AI 文档处理工具,将 PDF 转换为图像提取结构化数据
Documind 是一款利用 AI 技术从 PDF 中提取结构化数据的先进文档处理工具,支持灵活的本地或云端部署。
81 8
Documind:开源 AI 文档处理工具,将 PDF 转换为图像提取结构化数据
|
15天前
|
人工智能 JavaScript 数据可视化
深入探索 Flux Tools 在 AI 图像创作中的强大功能
Flux Tools 是由 Black Forest Labs 开发的一套先进 AI 图像编辑工具,集成了修补、扩展、深度映射和边缘检测等功能,为用户提供高精度的图像控制能力,广泛应用于照片编辑、数字艺术创作和设计工作等领域,极大提升了创作效率与自由度。