简单的Python端口扫描工具制作

简介: 简单的Python端口扫描工具制作

基于python3制作,脚本如下:


# This script runs on Python 3import socket, threading
def TCP_connect(ip, port_number, delay, output):    TCPsock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)    TCPsock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)    TCPsock.settimeout(delay)    try:        TCPsock.connect((ip, port_number))        output[port_number] = 'Listening'    except:        output[port_number] = ''
def scan_ports(host_ip, delay):
    threads = []        # To run TCP_connect concurrently    output = {}         # For printing purposes
    # Spawning threads to scan ports    for i in range(10000):        t = threading.Thread(target=TCP_connect, args=(host_ip, i, delay, output))        threads.append(t)
    # Starting threads    for i in range(10000):        threads[i].start()
    # Locking the script until all threads complete    for i in range(10000):        threads[i].join()
    # Printing listening ports from small to large    for i in range(10000):        if output[i] == 'Listening':            print(str(i) + ': ' + output[i])
def main():    host_ip = input("Enter host IP: ")    delay = int(input("How many seconds the socket is going to wait until timeout: "))       scan_ports(host_ip, delay)    input("Press Any Key")
if __name__ == "__main__":    main()


测试:


640.gif

脚本如果直接发送xx.py文件给别人使用,可能还需要安装解释器,以及用的第三方包,不能直接使用,这里小编给打包成exe格式的,分享即可用。


首先安装pyinstaller,使用安装命令:pip install pyinstaller,这个不多说了。


我们来将这个.py的文件打包成一个exe,我们直接cmd切换到这个脚本的目录,执行命令:pyinstaller-F scan port.py,如下图所示。

640.gif

ps: -F参数表示覆盖打包,这样在打包时,不管我们打包几次,都是最新的,这个记住就行,固定命令。

2、执行完毕之后,会生成几个文件夹,如下图所示。


640.png

3、在dist里面呢,就有了一个exe程序,这个就是可执行的exe程序,如下图所示。

640.png


4、我们来运行一下这个,效果图如下图所示。

640.gif

相关文章
|
2天前
|
测试技术 数据库 Python
Python装饰器实战:打造高效性能计时工具
在数据分析中,处理大规模数据时,分析代码性能至关重要。本文介绍如何使用Python装饰器实现性能计时工具,在不改变现有代码的基础上,方便快速地测试函数执行时间。该方法具有侵入性小、复用性强、灵活度高等优点,有助于快速发现性能瓶颈并优化代码。通过设置循环次数参数,可以更准确地评估函数的平均执行时间,提升开发效率。
70 61
Python装饰器实战:打造高效性能计时工具
|
7天前
|
数据可视化 算法 数据挖掘
Python时间序列分析工具Aeon使用指南
**Aeon** 是一个遵循 scikit-learn API 风格的开源 Python 库,专注于时间序列处理。它提供了分类、回归、聚类、预测建模和数据预处理等功能模块,支持多种算法和自定义距离度量。Aeon 活跃开发并持续更新至2024年,与 pandas 1.4.0 版本兼容,内置可视化工具,适合数据探索和基础分析任务。尽管在高级功能和性能优化方面有提升空间,但其简洁的 API 和完整的基础功能使其成为时间序列分析的有效工具。
60 37
Python时间序列分析工具Aeon使用指南
|
13天前
|
存储 算法 Serverless
剖析文件共享工具背后的Python哈希表算法奥秘
在数字化时代,文件共享工具不可或缺。哈希表算法通过将文件名或哈希值映射到存储位置,实现快速检索与高效管理。Python中的哈希表可用于创建简易文件索引,支持快速插入和查找文件路径。哈希表不仅提升了文件定位速度,还优化了存储管理和多节点数据一致性,确保文件共享工具高效运行,满足多用户并发需求,推动文件共享领域向更高效、便捷的方向发展。
|
1月前
|
数据可视化 编译器 Python
Manim:数学可视化的强大工具 | python小知识
Manim(Manim Community Edition)是由3Blue1Brown的Grant Sanderson开发的数学动画引擎,专为数学和科学可视化设计。它结合了Python的灵活性与LaTeX的精确性,支持多领域的内容展示,能生成清晰、精确的数学动画,广泛应用于教育视频制作。安装简单,入门容易,适合教育工作者和编程爱好者使用。
394 7
|
2月前
|
JavaScript 前端开发 开发者
探索 DrissionPage: 强大的Python网页自动化工具
DrissionPage 是一个基于 Python 的网页自动化工具,结合了浏览器自动化的便利性和 requests 库的高效率。它提供三种页面对象:ChromiumPage、WebPage 和 SessionPage,分别适用于不同的使用场景,帮助开发者高效完成网页自动化任务。
284 4
|
2月前
|
开发者 Python
探索Python中的列表推导式:简洁而强大的工具
【10月更文挑战第41天】 在编程的世界中,效率与简洁是永恒的追求。本文将深入探讨Python编程语言中一个独特且强大的特性——列表推导式(List Comprehension)。我们将通过实际代码示例,展示如何利用这一工具简化代码、提升性能,并解决常见编程问题。无论你是初学者还是资深开发者,掌握列表推导式都将使你的Python之旅更加顺畅。
|
2月前
|
安全 Linux 网络安全
nmap 是一款强大的开源网络扫描工具,能检测目标的开放端口、服务类型和操作系统等信息
nmap 是一款强大的开源网络扫描工具,能检测目标的开放端口、服务类型和操作系统等信息。本文分三部分介绍 nmap:基本原理、使用方法及技巧、实际应用及案例分析。通过学习 nmap,您可以更好地了解网络拓扑和安全状况,提升网络安全管理和渗透测试能力。
224 5
|
3月前
|
数据采集 数据可视化 数据挖掘
R语言与Python:比较两种数据分析工具
R语言和Python是目前最流行的两种数据分析工具。本文将对这两种工具进行比较,包括它们的历史、特点、应用场景、社区支持、学习资源、性能等方面,以帮助读者更好地了解和选择适合自己的数据分析工具。
73 2
|
3月前
|
C语言 开发者 Python
探索Python中的列表推导式:简洁而强大的工具
【10月更文挑战第21天】在Python的世界里,代码的优雅与效率同样重要。列表推导式(List Comprehensions)作为一种强大而简洁的工具,允许开发者通过一行代码完成对列表的复杂操作。本文将深入探讨列表推导式的使用方法、性能考量以及它如何提升代码的可读性和效率。
|
3月前
|
自然语言处理 算法 数据挖掘
探讨如何利用Python中的NLP工具,从被动收集到主动分析文本数据的过程
【10月更文挑战第11天】本文介绍了自然语言处理(NLP)在文本分析中的应用,从被动收集到主动分析的过程。通过Python代码示例,详细展示了文本预处理、特征提取、情感分析和主题建模等关键技术,帮助读者理解如何有效利用NLP工具进行文本数据分析。
75 2