Java内存模型之volatile的底层实现机制

简介:

定义

java 语言规范对volatile 关键字的定义如下
screenshot
比较重要的一句话是:A file may be declared volatile, in which case the java
Memory Model ensures that all threads see a consistent value for the variable.
理解起来就是,对声明为 volatile 的属性,JMM能确保所有线程对这个属性看到的值是一致的(也就是说 volatile 能提供可见性)。然后我们就可以利用这个可见性大做文章,比如实现一个锁等。

HOW ——> volatile 能提供可见性

   二话不说开始撸代码吧:
public class TestOne  {
    private static volatile int a = 1;
    
    public static void test() {
            a = 2;     // 5
    }

    public static void main(String [] args) {
        test();
    }
}
 我们利用hsdis插件对上述代码进行反汇编:在控制台输入如下命令
 java -XX:+UnlockDiagnosticVMOptions -XX:+PrintAssembly -Xcomp -XX:CompileCommand=compileonly,*TestOne.test TestOne
 参数+PrintAssembly 的意思是打印出汇编代码,对于线上版的Hotspot 想打印出汇编代码需要加上参数+UnlockDiagnosticVMOptions。-Xcomp 参数是让JVM以编译模式执行代码,而不必要等到临界“热点”才触发JIT编译。
-XX:CompileCommand=compileonly,*TestOne.test 意思是只编译test方法,没有这个参数会输出一大推对这次实验没有用的汇编代码。
 结果如下:
    Code:
[Entry Point]
[Verified Entry Point]
[Constants]
  # {method} {0x00007f1718c00258} 'test' '()V' in 'TestOne'
  #           [sp+0x40]  (sp of caller)
  0x00007f1719108de0: mov    %eax,-0x14000(%rsp)
  0x00007f1719108de7: push   %rbp
  0x00007f1719108de8: sub    $0x30,%rsp         ;*iconst_2
                                                ; - TestOne::test@0 (line 5)

  0x00007f1719108dec: movabs $0xf6404248,%rsi   ;   {oop(a 'java/lang/Class' = 'TestOne')}
  0x00007f1719108df6: mov    $0x2,%edi
  0x00007f1719108dfb: mov    %edi,0x68(%rsi)
  0x00007f1719108dfe: lock addl $0x0,(%rsp)     ;*putstatic a
                                                ; - TestOne::test@1 (line 5)

  0x00007f1719108e03: add    $0x30,%rsp
  0x00007f1719108e07: pop    %rbp
  0x00007f1719108e08: test   %eax,0x16dc12f2(%rip)        # 0x00007f172feca100
                                                ;   {poll_return}
看到 lock addl 指令没,它刚好对应 Java源码中的第五行代码。这个 lock 前缀指令,正是volatile 具有可见性的奥秘的所在。
翻一翻 intel 开发手册(卷三第八章)

screenshot
上面画红圈的表明,处理器对volatile 的实现不是对系统总线进行加锁,而是对缓存加锁。

screenshot
上面是处理器对缓存加锁的实现方式:
① 对缓存行加锁内容的修改会导致修改后的值马上回写内存
② 该处理器会阻止其他处理器缓存相同的内容(意思就是清空其他处理器中相同的值)

通过 ① ② 处理器的实现机制,java 中的volatile 就可以实现可见性了。


博客内容参考自 《Java 并发编程的艺术》第二章 volatile 的应用

目录
相关文章
|
3月前
|
安全 Java 应用服务中间件
Spring Boot + Java 21:内存减少 60%,启动速度提高 30% — 零代码
通过调整三个JVM和Spring Boot配置开关,无需重写代码即可显著优化Java应用性能:内存减少60%,启动速度提升30%。适用于所有在JVM上运行API的生产团队,低成本实现高效能。
373 3
|
4月前
|
存储 缓存 Java
Java数组全解析:一维、多维与内存模型
本文深入解析Java数组的内存布局与操作技巧,涵盖一维及多维数组的声明、初始化、内存模型,以及数组常见陷阱和性能优化。通过图文结合的方式帮助开发者彻底理解数组本质,并提供Arrays工具类的实用方法与面试高频问题解析,助你掌握数组核心知识,避免常见错误。
|
2月前
|
Java 大数据 Go
从混沌到秩序:Java共享内存模型如何通过显式约束驯服并发?
并发编程旨在混乱中建立秩序。本文对比Java共享内存模型与Golang消息传递模型,剖析显式同步与隐式因果的哲学差异,揭示happens-before等机制如何保障内存可见性与数据一致性,展现两大范式的深层分野。(238字)
95 4
|
2月前
|
存储 缓存 Java
【深入浅出】揭秘Java内存模型(JMM):并发编程的基石
本文深入解析Java内存模型(JMM),揭示synchronized与volatile的底层原理,剖析主内存与工作内存、可见性、有序性等核心概念,助你理解并发编程三大难题及Happens-Before、内存屏障等解决方案,掌握多线程编程基石。
|
3月前
|
缓存 监控 Kubernetes
Java虚拟机内存溢出(Java Heap Space)问题处理方案
综上所述, 解决Java Heap Space溢出需从多角度综合施策; 包括但不限于配置调整、代码审查与优化以及系统设计层面改进; 同样也不能忽视运行期监控与预警设置之重要性; 及早发现潜在风险点并采取相应补救手段至关重要.
577 17
|
4月前
|
监控 Kubernetes Java
最新技术栈驱动的 Java 绿色计算与性能优化实操指南涵盖内存优化与能效提升实战技巧
本文介绍了基于Java 24+技术栈的绿色计算与性能优化实操指南。主要内容包括:1)JVM调优,如分代ZGC配置和结构化并发优化;2)代码级优化,包括向量API加速数据处理和零拷贝I/O;3)容器化环境优化,如K8s资源匹配和节能模式配置;4)监控分析工具使用。通过实践表明,这些优化能显著提升性能(响应时间降低40-60%)同时降低资源消耗(内存减少30-50%,CPU降低20-40%)和能耗(服务器功耗减少15-35%)。建议采用渐进式优化策略。
236 1
|
4月前
|
存储 监控 算法
Java垃圾回收机制(GC)与内存模型
本文主要讲述JVM的内存模型和基本调优机制。
|
5月前
|
SQL 缓存 安全
深度理解 Java 内存模型:从并发基石到实践应用
本文深入解析 Java 内存模型(JMM),涵盖其在并发编程中的核心作用与实践应用。内容包括 JMM 解决的可见性、原子性和有序性问题,线程与内存的交互机制,volatile、synchronized 和 happens-before 等关键机制的使用,以及在单例模式、线程通信等场景中的实战案例。同时,还介绍了常见并发 Bug 的排查与解决方案,帮助开发者写出高效、线程安全的 Java 程序。
278 0
|
4月前
|
边缘计算 算法 Java
Java 绿色计算与性能优化:从内存管理到能耗降低的全方位优化策略与实践技巧
本文探讨了Java绿色计算与性能优化的技术方案和应用实例。文章从JVM调优(包括垃圾回收器选择、内存管理和并发优化)、代码优化(数据结构选择、对象创建和I/O操作优化)等方面提出优化策略,并结合电商平台、社交平台和智能工厂的实际案例,展示了通过Java新特性提升性能、降低能耗的显著效果。最终指出,综合运用这些优化方法不仅能提高系统性能,还能实现绿色计算目标,为企业节省成本并符合环保要求。
182 0
|
5月前
|
存储
阿里云轻量应用服务器收费标准价格表:200Mbps带宽、CPU内存及存储配置详解
阿里云香港轻量应用服务器,200Mbps带宽,免备案,支持多IP及国际线路,月租25元起,年付享8.5折优惠,适用于网站、应用等多种场景。
1892 0