【Python基础】reduce函数详解

简介: 【Python基础】reduce函数详解

【Python基础】reduce函数详解


转载请注明出处:【Python基础】reduce函数详解

reduce函数原本在python2中也是个内置函数,不过在python3中被移到functools模块中。

reduce函数先从列表(或序列)中取出2个元素执行指定函数,并将输出结果与第3个元素传入函数,输出结果再与第4个元素传入函数,…,以此类推,直到列表每个元素都取完。

1 reduce用法

对列表元素求和,如果不用reduce,我们一般常用的方法是for循环:

def sum_func(arr):
    if len(arr) <= 0:
        return 0
    else:
        out = arr[0]
        for v in arr[1:]:
            out += v
        return out
a = [1, 2, 3, 4, 5]
print(sum_func(a))

可以看到,代码量比较多,不够优雅。如果使用reduce,那么代码将非常简洁:

from functools import reduce
a = [1, 2, 3, 4, 5]
def add(x, y): return x + y
print(reduce(add, a))

输出结果为:

15

2 reduce与for循环性能对比

与内置函数map和filter不一样的是,在性能方面,reduce相比较for循环来说没有优势,甚至在实际测试中

reduce比for循环更慢。

from functools import reduce
import time
def test_for(arr):
    if len(arr) <= 0:
        return 0
    out = arr[0]
    for i in arr[1:]:
        out += i
    return out
def test_reduce(arr):
    out = reduce(lambda x, y: x + y, arr)
    return out
a = [i for i in range(100000)]
t1 = time.perf_counter()
test_for(a)
t2 = time.perf_counter()
test_reduce(a)
t3 = time.perf_counter()
print('for循环耗时:', (t2 - t1))
print('reduce耗时:', (t3 - t2))

输出结果如下:

for循环耗时: 0.009323899999999996
reduce耗时: 0.018477400000000005

因此,如果对性能要求苛刻,建议不用reduce, 如果希望代码更优雅而不在意耗时,可以用reduce。

相关文章
|
2月前
|
存储 JavaScript Java
(Python基础)新时代语言!一起学习Python吧!(四):dict字典和set类型;切片类型、列表生成式;map和reduce迭代器;filter过滤函数、sorted排序函数;lambda函数
dict字典 Python内置了字典:dict的支持,dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度。 我们可以通过声明JS对象一样的方式声明dict
207 1
|
2月前
|
算法 Java Docker
(Python基础)新时代语言!一起学习Python吧!(三):IF条件判断和match匹配;Python中的循环:for...in、while循环;循环操作关键字;Python函数使用方法
IF 条件判断 使用if语句,对条件进行判断 true则执行代码块缩进语句 false则不执行代码块缩进语句,如果有else 或 elif 则进入相应的规则中执行
303 1
|
2月前
|
Java 数据处理 索引
(numpy)Python做数据处理必备框架!(二):ndarray切片的使用与运算;常见的ndarray函数:平方根、正余弦、自然对数、指数、幂等运算;统计函数:方差、均值、极差;比较函数...
ndarray切片 索引从0开始 索引/切片类型 描述/用法 基本索引 通过整数索引直接访问元素。 行/列切片 使用冒号:切片语法选择行或列的子集 连续切片 从起始索引到结束索引按步长切片 使用slice函数 通过slice(start,stop,strp)定义切片规则 布尔索引 通过布尔条件筛选满足条件的元素。支持逻辑运算符 &、|。
185 0
|
3月前
|
设计模式 缓存 监控
Python装饰器:优雅增强函数功能
Python装饰器:优雅增强函数功能
280 101
|
3月前
|
缓存 测试技术 Python
Python装饰器:优雅地增强函数功能
Python装饰器:优雅地增强函数功能
231 99
|
3月前
|
存储 缓存 测试技术
Python装饰器:优雅地增强函数功能
Python装饰器:优雅地增强函数功能
202 98
|
3月前
|
缓存 Python
Python中的装饰器:优雅地增强函数功能
Python中的装饰器:优雅地增强函数功能
|
4月前
|
Python
Python 函数定义
Python 函数定义
567 155
|
5月前
|
PHP Python
Python format()函数高级字符串格式化详解
在 Python 中,字符串格式化是一个重要的主题,format() 函数作为一种灵活且强大的字符串格式化方法,被广泛应用。format() 函数不仅能实现基本的插入变量,还支持更多高级的格式化功能,包括数字格式、对齐、填充、日期时间格式、嵌套字段等。 今天我们将深入解析 format() 函数的高级用法,帮助你在实际编程中更高效地处理字符串格式化。
573 0
|
3月前
|
算法 安全 数据安全/隐私保护
Python随机数函数全解析:5个核心工具的实战指南
Python的random模块不仅包含基础的随机数生成函数,还提供了如randint()、choice()、shuffle()和sample()等实用工具,适用于游戏开发、密码学、统计模拟等多个领域。本文深入解析这些函数的用法、底层原理及最佳实践,帮助开发者高效利用随机数,提升代码质量与安全性。
728 0

推荐镜像

更多