JDK源码(11)-Long、Short

简介: JDK源码(11)-Long、Short

 一、概述

 

类定义:

public final class Long extends Number implements Comparable<Long>

image.gif

是对基本数据类型long的包装。

二、主要属性

image.gif编辑

三、主要方法及其源码

1.toString相关的

public static String toString(long i, int radix) 
public static String toUnsignedString(long i, int radix)
private static BigInteger toUnsignedBigInteger(long i)
public static String toHexString(long i)
public static String toOctalString(long i)
public static String toBinaryString(long i)
public static String toString(long i)
public static String toUnsignedString(long i)

image.gif

里面几个无修饰符和私有方法:

private static BigInteger toUnsignedBigInteger(long i) {
        if (i >= 0L)
            return BigInteger.valueOf(i);
        else {
            int upper = (int) (i >>> 32);
            int lower = (int) i;
            // return (upper << 32) + lower
            return (BigInteger.valueOf(Integer.toUnsignedLong(upper))).shiftLeft(32).
                add(BigInteger.valueOf(Integer.toUnsignedLong(lower)));
        }
    }

image.gif

static String toUnsignedString0(long val, int shift) {
        // assert shift > 0 && shift <=5 : "Illegal shift value";
        int mag = Long.SIZE - Long.numberOfLeadingZeros(val);
        int chars = Math.max(((mag + (shift - 1)) / shift), 1);
        char[] buf = new char[chars];
        formatUnsignedLong(val, shift, buf, 0, chars);
        return new String(buf, true);
    }

image.gif

static int formatUnsignedLong(long val, int shift, char[] buf, int offset, int len) {
        int charPos = len;
        int radix = 1 << shift;
        int mask = radix - 1;
        do {
            buf[offset + --charPos] = Integer.digits[((int) val) & mask];
            val >>>= shift;
        } while (val != 0 && charPos > 0);
        return charPos;
    }

image.gif

static void getChars(long i, int index, char[] buf) {
        long q;
        int r;
        int charPos = index;
        char sign = 0;
        if (i < 0) {
            sign = '-';
            i = -i;
        }
        // Get 2 digits/iteration using longs until quotient fits into an int
        while (i > Integer.MAX_VALUE) {
            q = i / 100;
            // really: r = i - (q * 100);
            r = (int)(i - ((q << 6) + (q << 5) + (q << 2)));
            i = q;
            buf[--charPos] = Integer.DigitOnes[r];
            buf[--charPos] = Integer.DigitTens[r];
        }
        // Get 2 digits/iteration using ints
        int q2;
        int i2 = (int)i;
        while (i2 >= 65536) {
            q2 = i2 / 100;
            // really: r = i2 - (q * 100);
            r = i2 - ((q2 << 6) + (q2 << 5) + (q2 << 2));
            i2 = q2;
            buf[--charPos] = Integer.DigitOnes[r];
            buf[--charPos] = Integer.DigitTens[r];
        }
        // Fall thru to fast mode for smaller numbers
        // assert(i2 <= 65536, i2);
        for (;;) {
            q2 = (i2 * 52429) >>> (16+3);
            r = i2 - ((q2 << 3) + (q2 << 1));  // r = i2-(q2*10) ...
            buf[--charPos] = Integer.digits[r];
            i2 = q2;
            if (i2 == 0) break;
        }
        if (sign != 0) {
            buf[--charPos] = sign;
        }
    }

image.gif

这些方法用到了Integer的几个属性,还使用了了一些移位操作。

2.parseLong

public static long parseLong(String s, int radix)
              throws NumberFormatException
    {
        if (s == null) {
            throw new NumberFormatException("null");
        }
        if (radix < Character.MIN_RADIX) {
            throw new NumberFormatException("radix " + radix +
                                            " less than Character.MIN_RADIX");
        }
        if (radix > Character.MAX_RADIX) {
            throw new NumberFormatException("radix " + radix +
                                            " greater than Character.MAX_RADIX");
        }
        long result = 0;
        boolean negative = false;
        int i = 0, len = s.length();
        long limit = -Long.MAX_VALUE;
        long multmin;
        int digit;
        if (len > 0) {
            char firstChar = s.charAt(0);
            if (firstChar < '0') { // Possible leading "+" or "-"
                if (firstChar == '-') {
                    negative = true;
                    limit = Long.MIN_VALUE;
                } else if (firstChar != '+')
                    throw NumberFormatException.forInputString(s);
                if (len == 1) // Cannot have lone "+" or "-"
                    throw NumberFormatException.forInputString(s);
                i++;
            }
            multmin = limit / radix;
            while (i < len) {
                // Accumulating negatively avoids surprises near MAX_VALUE
                digit = Character.digit(s.charAt(i++),radix);
                if (digit < 0) {
                    throw NumberFormatException.forInputString(s);
                }
                if (result < multmin) {
                    throw NumberFormatException.forInputString(s);
                }
                result *= radix;
                if (result < limit + digit) {
                    throw NumberFormatException.forInputString(s);
                }
                result -= digit;
            }
        } else {
            throw NumberFormatException.forInputString(s);
        }
        return negative ? result : -result;
    }

image.gif

四、Short

Long和Short中有些方法已经在Integer中进行了讲解,所以不再赘述。Short中的最小最大属性如下:

public static final short   MIN_VALUE = -32768;
public static final short   MAX_VALUE = 32767;

image.gif


相关文章
|
6月前
|
安全 前端开发 Java
JDK源码级别彻底剖析JVM类加载机制
JDK源码级别彻底剖析JVM类加载机制
|
6月前
|
缓存 Dubbo Java
趁同事上厕所的时间,看完了 Dubbo SPI 的源码,瞬间觉得 JDK SPI 不香了
趁同事上厕所的时间,看完了 Dubbo SPI 的源码,瞬间觉得 JDK SPI 不香了
|
3月前
|
算法 安全 Java
深入JDK源码:揭开ConcurrentHashMap底层结构的神秘面纱
【8月更文挑战第24天】`ConcurrentHashMap`是Java并发编程中不可或缺的线程安全哈希表实现。它通过精巧的锁机制和无锁算法显著提升了并发性能。本文首先介绍了早期版本中使用的“段”结构,每个段是一个带有独立锁的小型哈希表,能够减少线程间竞争并支持动态扩容以应对高并发场景。随后探讨了JDK 8的重大改进:取消段的概念,采用更细粒度的锁控制,并引入`Node`等内部类以及CAS操作,有效解决了哈希冲突并实现了高性能的并发访问。这些设计使得`ConcurrentHashMap`成为构建高效多线程应用的强大工具。
52 2
|
5月前
|
Java Spring
深入解析Spring源码,揭示JDK动态代理的工作原理。
深入解析Spring源码,揭示JDK动态代理的工作原理。
57 0
|
6月前
|
设计模式 Java
根据JDK源码Calendar来看工厂模式和建造者模式
根据JDK源码Calendar来看工厂模式和建造者模式
|
6月前
|
算法 Java 索引
【数据结构与算法】4、双向链表(学习 jdk 的 LinkedList 部分源码)
【数据结构与算法】4、双向链表(学习 jdk 的 LinkedList 部分源码)
67 0
|
6月前
|
Java Linux iOS开发
Spring5源码(27)-静态代理模式和JDK、CGLIB动态代理
Spring5源码(27)-静态代理模式和JDK、CGLIB动态代理
46 0
|
6月前
|
消息中间件 Oracle Dubbo
Netty 源码共读(一)如何阅读JDK下sun包的源码
Netty 源码共读(一)如何阅读JDK下sun包的源码
126 1
|
6月前
|
算法 安全 Java
ConcurrentLinkedQueue的源码解析(基于JDK1.8)
ConcurrentLinkedQueue的源码解析(基于JDK1.8) ConcurrentLinkedQueue是Java集合框架中的一种线程安全的队列,它是通过CAS(Compare and Swap)算法实现的并发队列。在并发场景下,ConcurrentLinkedQueue能够保证队列的线程安全性,同时性能也很不错。
|
6月前
|
Java
LinkedBlockingDeque的源码解析(基于JDK1.8)
LinkedBlockingDeque的源码解析(基于JDK1.8) LinkedBlockingDeque是Java中的一个阻塞双端队列,它继承自AbstractQueue类并实现了BlockingDeque接口。在多线程环境下,LinkedBlockingDeque能够提供高效的并发访问能力。下面我们来看一下它的源码实现。