【阿旭机器学习实战】【13】决策树分类模型实战:泰坦尼克号生存预测

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 【阿旭机器学习实战】【13】决策树分类模型实战:泰坦尼克号生存预测

决策树分类模型实战:泰坦尼克号生存预测

导入数据集并查看基本信息


import pandas as pd
titanic = pd.read_csv("../data/titanic.txt")
titanic.head()


image.png


# 打印数据集表头
titanic.columns
Index(['row.names', 'pclass', 'survived', 'name', 'age', 'embarked',
       'home.dest', 'room', 'ticket', 'boat', 'sex'],
      dtype='object')

数据字段的含义:


数据集中有12 个字段,每一个字段的名称和含义如下

PassengerId:乘客 ID

Survived:是否生存

Pclass:客舱等级

Name:乘客姓名

Sex:性别

Age:年龄

SibSp:在船兄弟姐妹数/配偶数

Parch:在船父母数/子女数

Ticket:船票编号

Fare:船票价格

Cabin:客舱号

Embarked:登船港口


选择属性:通过分析发现某些属性(如:name)和是否生还没有关系



选择特征并进行特征处理


# 我们选择"pclass","age","sex"这三个主要特征进行模型训练
x = titanic[["pclass","age","sex"]]
y = titanic[["survived"]]
• 1
• 2
• 3


补全缺失值


x.isnull().any()
• 1
pclass    False
age        True
sex       False
dtype: bool
# 查看缺失
x.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1313 entries, 0 to 1312
Data columns (total 3 columns):
pclass    1313 non-null object
age       633 non-null float64
sex       1313 non-null object
dtypes: float64(1), object(2)
memory usage: 30.9+ KB
# 分析发现年龄缺失了一半,如果全都丢弃,数据损失过多
# 丢弃不行需要填补,用所有年龄的平均值来填补
x["age"].fillna(x["age"].mean(),inplace=True)
D:\anaconda3\lib\site-packages\pandas\core\generic.py:5430: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
  self._update_inplace(new_data)
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.25)
• 1
x_train[:10]


image.png


特征处理:对特征进行向量化


from sklearn.feature_extraction import DictVectorizer
• 1
vec = DictVectorizer(sparse=False)#sparse=False意思是不产生稀疏矩阵
# 非数字类型的特征向量化
x_train = vec.fit_transform(x_train.to_dict(orient="record"))
x_train[:5]
array([[31.19418104,  0.        ,  0.        ,  1.        ,  1.        ,
         0.        ],
       [46.        ,  1.        ,  0.        ,  0.        ,  0.        ,
         1.        ],
       [35.        ,  1.        ,  0.        ,  0.        ,  1.        ,
         0.        ],
       [46.        ,  1.        ,  0.        ,  0.        ,  0.        ,
         1.        ],
       [18.        ,  0.        ,  1.        ,  0.        ,  0.        ,
         1.        ]])
x_train.shape
• 1
(984, 6)
• 1
x_test = vec.fit_transform(x_test.to_dict(orient="record"))

x_test.shape
• 1
(329, 6)
• 1


创建决策树模型,训练预测


dt = DecisionTreeClassifier()
• 1
dt.fit(x_train,y_train)
DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,
            max_features=None, max_leaf_nodes=None,
            min_impurity_decrease=0.0, min_impurity_split=None,
            min_samples_leaf=1, min_samples_split=2,
            min_weight_fraction_leaf=0.0, presort=False, random_state=None,
            splitter='best')
y_pre = dt.predict(x_test)
• 1
y_pre[:10],y_test[:10]


(array([0, 0, 1, 0, 1, 0, 0, 0, 0, 0], dtype=int64),       survived
 908          0
 822          0
 657          1
 856          0
 212          1
 641          1
 305          0
 778          1
 818          1
 1179         0)
dt.score(x_test,y_test)
# score也成为准确性,只能从宏观上查看到一个模型的准确程度
• 1
• 2
0.7872340425531915


性能评测报告


from sklearn.metrics import classification_report
• 1
print(classification_report(y_pre,y_test,target_names=["died","servived"]))
             precision    recall  f1-score   support
       died       0.92      0.78      0.84       244
   servived       0.56      0.81      0.66        85
avg / total       0.83      0.79      0.80       329


性能评测报告的相关指标:


比如两个类别A和B,预测的情况会有四种:True A、True B、False A、False B
1、准确率(score):模型预测的正确的概率:score = (True A+True B)/(True A + True B + False A +False B)
2、精确率:表示的是每一个类别预测准确的数量占所有预测为该类别的数量的比例:precision_a = True A / (True A + False A)
3、召回率:表示的每一个类别预测正确的数量占这里类别真正数量的比例:recall_a = True A / (True A + False B)
4、F1指标:F1_a = 2/(1/precision_a + 1/recall_a) = 2*(precision_a*recall_a)/(precision_a+recall_a) 调和平均数,F1指标指的就是精确率和召回率的调和平均数,除了把精确率和召回率平均,还可以给两个指标相近的模型以较高的评分;
【注意】如果精确率和召回率差距太大,模型就不具备参考价值
相关文章
|
1月前
|
机器学习/深度学习 TensorFlow API
机器学习实战:TensorFlow在图像识别中的应用探索
【10月更文挑战第28天】随着深度学习技术的发展,图像识别取得了显著进步。TensorFlow作为Google开源的机器学习框架,凭借其强大的功能和灵活的API,在图像识别任务中广泛应用。本文通过实战案例,探讨TensorFlow在图像识别中的优势与挑战,展示如何使用TensorFlow构建和训练卷积神经网络(CNN),并评估模型的性能。尽管面临学习曲线和资源消耗等挑战,TensorFlow仍展现出广阔的应用前景。
57 5
|
2月前
|
机器学习/深度学习 人工智能 算法
揭开深度学习与传统机器学习的神秘面纱:从理论差异到实战代码详解两者间的选择与应用策略全面解析
【10月更文挑战第10天】本文探讨了深度学习与传统机器学习的区别,通过图像识别和语音处理等领域的应用案例,展示了深度学习在自动特征学习和处理大规模数据方面的优势。文中还提供了一个Python代码示例,使用TensorFlow构建多层感知器(MLP)并与Scikit-learn中的逻辑回归模型进行对比,进一步说明了两者的不同特点。
80 2
|
2月前
|
机器学习/深度学习 数据挖掘 Serverless
手把手教你全面评估机器学习模型性能:从选择正确评价指标到使用Python与Scikit-learn进行实战演练的详细指南
【10月更文挑战第10天】评估机器学习模型性能是开发流程的关键,涉及准确性、可解释性、运行速度等多方面考量。不同任务(如分类、回归)采用不同评价指标,如准确率、F1分数、MSE等。示例代码展示了使用Scikit-learn库评估逻辑回归模型的过程,包括数据准备、模型训练、性能评估及交叉验证。
93 1
|
2月前
|
机器学习/深度学习 算法 数据挖掘
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧1
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧
54 5
|
2月前
|
机器学习/深度学习 算法 API
机器学习入门(六):分类模型评估方法
机器学习入门(六):分类模型评估方法
|
2月前
|
机器学习/深度学习 数据采集 分布式计算
【Python篇】深入机器学习核心:XGBoost 从入门到实战
【Python篇】深入机器学习核心:XGBoost 从入门到实战
140 3
|
2月前
|
机器学习/深度学习 算法 数据可视化
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧2
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧
43 1
|
2月前
|
数据采集 机器学习/深度学习 TensorFlow
声纹识别实战:从数据采集到模型训练
【10月更文挑战第16天】声纹识别技术通过分析个人的语音特征来验证其身份,具有无接触、便捷的特点。本文将带你从零开始,一步步完成声纹识别系统的构建,包括数据采集、音频预处理、特征提取、模型训练及评估等关键步骤。我们将使用Python语言和相关的科学计算库来进行实践。
296 0
|
3月前
|
机器学习/深度学习 算法 数据挖掘
从菜鸟到大师:Scikit-learn库实战教程,模型训练、评估、选择一网打尽!
【9月更文挑战第13天】在数据科学与机器学习领域,Scikit-learn是不可或缺的工具。本文通过问答形式,指导初学者从零开始使用Scikit-learn进行模型训练、评估与选择。首先介绍了如何安装库、预处理数据并训练模型;接着展示了如何利用多种评估指标确保模型性能;最后通过GridSearchCV演示了系统化的参数调优方法。通过这些实战技巧,帮助读者逐步成长为熟练的数据科学家。
125 3
|
3月前
|
机器学习/深度学习 人工智能 算法
利用机器学习预测股市趋势:一个实战案例
【9月更文挑战第5天】在这篇文章中,我们将探索如何使用机器学习技术来预测股市趋势。我们将通过一个简单的Python代码示例来演示如何实现这一目标。请注意,这只是一个入门级的示例,实际应用中可能需要更复杂的模型和更多的数据。

热门文章

最新文章

相关产品

  • 人工智能平台 PAI