常见排序算法-冒泡排序、选择排序 、插入排序 、快速排序、 归并排序 、堆排序

简介: 排序算法• 冒泡排序• 冒泡排序的优化• 选择排序• 插入排序• 快速排序• 归并排序• 堆排序

冒泡排序


145866746f6f4a6ab7348bed9c731daa.gif

平均时间复杂度: o(n^2)

最好时间: o(n)

最坏时间: o(n^2)

空间复杂度: o(1)

是否稳定: 稳定

简单的冒泡排序

    public int[] bubbleSort(int [] nums){
        int len = nums.length;
        if(len <= 1) return nums;
        for(int i = 0;i < len;i++){
            for(int j = 0;j < len-i-1;j++){
                if(nums[j] > nums[j+1]){
                    int temp = nums[j+1];
                    nums[j+1] = nums[j];
                    nums[j] = temp;
                }
            }
        }
        return nums;
    }


冒泡排序的优化

设置标志位

设置一个标志位来标识这次遍历是否进行过交换

如果没有进行过交换则表示数组已经有序,直接退出

 public int[] binarySort(int [] nums){
        int len = nums.length;
        if(len <= 1) return nums;
        for(int i = 0;i < len-1;i++){
            boolean isSort = true;  //是否有序
            for(int j = 0;j < len-i-1;j++){
                if(nums[j] > nums[j+1]){
                    int temp = nums[j+1];
                    nums[j+1] = nums[j];
                    nums[j] = temp;
                    isSort = false;
                }
            }
            if(isSort) break;
        }
        return nums;
    }


设置结束位置

比如初始数组为[4,3,2,1,5,6]

经过第一次排序后数组变为[3,2,1,4,5,6]

如果按照普通冒泡排序下次需要遍历的下标范围为[0,4]

但是[3,4]是已经有序的,所以可以减少比较,保存上次交换的结束位置

public int[] bubbleSort(int [] nums){
    int len = nums.length;
    if(len <= 1) return nums;
    int max_index = len-1;
    int index = max_index;
    for(int i = 0;i < len-1;i++){
        boolean isSort = true;  //是否有序
        for(int j = 0;j < index;j++){
            if(nums[j] > nums[j+1]){
                int temp = nums[j+1];
                nums[j+1] = nums[j];
                nums[j] = temp;
                isSort = false;
                max_index=j;
            }
        }
        if(isSort) break;
        index = max_index;
    }
    return nums;
    }

双向冒泡排序

与设置结束位置类似,这个是也设置了起始位置

使得在left之前的都是已经排好序的

    public int[] bubbleSort(int [] nums){
        int len = nums.length;
        if(len <= 1) return nums;
        int left = 0;
        int right = len-1;
        int tleft = 0,tright = 0;
        while(left < right){
            boolean isSort = true;
            for(int i = left;i < right;i++){
                if(nums[i+1] < nums[i]){
                    int temp = nums[i];
                    nums[i] = nums[i+1];
                    nums[i+1] = temp;
                    isSort = false;
                    tright = i;
                }
            }
            if(isSort)break;
            right = tright;
            isSort = true;
            for(int i = right;i > left;i--){
                if(nums[i] < nums[i-1]){
                    int temp = nums[i];
                    nums[i] = nums[i-1];
                    nums[i-1] = temp;
                    isSort = false;
                    tleft = i;
                }
            }
            if(isSort)break;
            left = tleft;
        }
        return nums;
    }

选择排序


fd3b383f48e74e8e86067846af27c12b.gif

平均时间复杂度: o(n^2)

最好时间: o(n^2)

最坏时间: o(n^2)

空间复杂度: o(1)

是否稳定: 不稳定

选择排序

    public int[] selectSort(int [] nums){
        int len = nums.length;
        if(len <= 1) return nums;
        for(int i = 0;i < len;i++){
            int minIndex = i;
            for(int j = i;j < len;j++){
                if(nums[j] < nums[minIndex]){
                    minIndex = j;
                }
            }
            int t = nums[minIndex];
            nums[minIndex] = nums[i];
            nums[i] = t;
        }
        return nums;
    }


插入排序


7a7a54d942f74bfdb4b0629173d24c0c.gif

平均时间复杂度: o(n^2)

最好时间: o(n)

最坏时间: o(n^2)

空间复杂度: o(1)

是否稳定: 稳定

插入排序

    public int[] insertSort(int [] nums){
        int len = nums.length;
        if(len <= 1) return nums;
        for(int i = 1;i < len;i++){
            int cur = nums[i];
            int preIndex = i - 1;
            while(preIndex >= 0 && nums[preIndex] > cur){
                nums[preIndex+1] = nums[preIndex];
                preIndex--;
            }
            nums[preIndex+1] = cur;
        }
        return nums;
    }


快速排序


e34b13dd820448efb8f6664e5b1192dd.gif

平均时间复杂度: o(nlogn)

最好时间: o(nlogn)

最坏时间: o(n^2)

空间复杂度: o(logn)

是否稳定: 不稳定

快速排序

    public void quickSort(int [] nums,int left,int right){
       if(left >= right) return;
       int l = left - 1;
       int r = right + 1;
       int t = nums[left];
       while(l < r){
           do l++;while(nums[l] < t);
           do r--;while(nums[r] > t);
           if(l < r){
               int temp = nums[l];
               nums[l] = nums[r];
               nums[r] = temp;
           }
       } 
       quickSort(nums,left,r);
       quickSort(nums,r+1,right);
    }


归并排序


73d0a113dfc94817850eb68e93437e94.gif

平均时间复杂度: o(nlogn)

最好时间: o(nlogn)

最坏时间: o(nlogn)

空间复杂度: o(n)

是否稳定: 稳定

    public void mergeSort(int [] nums,int left,int right){
        if(left >= right) return;
        int mid = left + right >> 1;
        mergeSort(nums,left,mid);
        mergeSort(nums,mid+1,right);
        //需要合并 [left,mid] [mid+1,right]
        int []temp = new int[right-left+1];
        int l = left,r = mid+1,k = 0;
        while(l <= mid && r <= right){
            if(nums[l] < nums[r]) temp[k++] = nums[l++];
            else temp[k++] = nums[r++];
        }
        while(l <= mid) temp[k++] = nums[l++];
        while(r <= right) temp[k++] = nums[r++];
        for(int i = right;i >= left;i--){
            nums[i] = temp[--k];
        }
    }


堆排序


22b96ad4c2174e4e8f6bfc5f47cecd6a.gif

平均时间复杂度: o(nlogn)

最好时间: o(nlogn)

最坏时间: o(nlogn)

空间复杂度: o(1)

是否稳定: 不稳定

    public void heapSort(int [] nums){
        int len = nums.length;
        if(len <= 1) return;
        //构造大根堆
        for(int i = (len-1)/2; i>=0 ;i--){
            heap(nums,i,len);
        }
        //将根弄到最后
        for(int i = len-1;i >=0; i--){
            int t = nums[0];
            nums[0] = nums[i];
            nums[i] = t;
            heap(nums,0,i);
        }
    }
    //子树构建大顶堆
    public void heap(int[] nums,int index,int size){
        int max = index;
        int left = 2 * index + 1;
        int right = 2 * index + 2;
        if(left < size && nums[left] > nums[max]) max = left;
        if(right < size && nums[right] > nums[max]) max = right;
        if(max != index){
            int t = nums[index];
            nums[index] = nums[max];
            nums[max] = t;
            heap(nums,max,size);
        }
    }
相关文章
|
5月前
|
搜索推荐 算法 Go
Go语言数组排序(冒泡排序法)—— 用最直观的方式掌握排序算法
本案例介绍使用冒泡排序对整数数组进行升序排序的实现方法,涵盖输入处理、错误检查与排序逻辑。通过代码演示和算法解析,帮助理解排序原理及Go语言切片操作,为学习更复杂排序算法打下基础。
|
5月前
|
搜索推荐
冒泡排序与其它排序算法比较
本内容比较了冒泡排序、选择排序和插入排序的特性。三者时间复杂度均为O(n²),但交换次数和稳定性不同。冒泡排序稳定,交换次数多,可优化至O(n);选择排序不稳定,交换次数少;插入排序交换次数最少,且二者均为稳定排序。对于有序数组,冒泡和插入可优化提升效率。
116 0
|
8月前
|
算法 搜索推荐
快速排序-数据结构与算法
快速排序(Quick Sort)是一种基于分治法的高效排序算法。其核心思想是通过选择基准(pivot),将数组划分为左右两部分,使得左侧元素均小于基准,右侧元素均大于基准,然后递归地对左右两部分进行排序。时间复杂度平均为 O(n log n),最坏情况下为 O(n²)(如数组已有序)。空间复杂度为 O(1),属于原地排序,但稳定性不佳。 实现步骤包括编写 `partition` 核心逻辑、递归调用的 `quickSort` 和辅助函数 `swap`。优化方法有随机化基准和三数取中法,以减少最坏情况的发生。
570 13
|
存储 搜索推荐 Python
用 Python 实现快速排序算法。
快速排序的平均时间复杂度为$O(nlogn)$,空间复杂度为$O(logn)$。它在大多数情况下表现良好,但在某些特殊情况下可能会退化为最坏情况,时间复杂度为$O(n^2)$。你可以根据实际需求对代码进行调整和修改,或者尝试使用其他优化策略来提高快速排序的性能
294 61
|
2月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
258 0
|
2月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
198 2
|
3月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
223 3
|
3月前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
159 6
|
2月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
174 8
|
2月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
179 8

热门文章

最新文章