动态规划专题讲解(二)

简介: 动态规划专题讲解(二)


多重背包


LeetCode上无对应题目,只简单介绍


1. 多重背包例题

题目

有N种物品和一个容量为 V  的背包。第i种物品最多有 M i 件可用,每件耗费的空间是C i

,价值是 W i 。求解将哪些物品装入背包可使这些物品的耗费的空间 总和不超过背包容量,且价值总和最大。


多重背包和01背包是非常像的, 为什么和01背包像呢?


每件物品最多有 M i件可用,把 M i 件摊开,其实就是一个01背包问题了。


例如:


背包最大重量为10。


物品为:


重量 价值 数量
物品0

1

15

2

物品1

3

20

3

物品2

4

30

2

问背包能背的物品最大价值是多少?


和如下情况有区别么?


重量 价值 数量
物品0

1

15

1

物品0

1

15

1

物品1

3

20

1

物品1

3

20

1

物品1

3

20

1

物品2

4

30

1

物品2

4

30

1

毫无区别,这就转成了一个01背包问题了,且每个物品只用一次。


思路

将有多件的物品展开,就可将完全背包转换成01背包


代码展示

#include 
#include 
using namespace std;
void test_multi_pack()
{
    vector weight = {1, 3, 4};
    vector value = {15, 20, 30};
    vector nums = {2, 3, 2};
    int bagWeight = 10;
    for (int i = 0; i < nums.size(); i++)
    {
        while (nums[i] > 1)
        { // nums[i]保留到1,把其他物品都展开
            weight.push_back(weight[i]);
            value.push_back(value[i]);
            nums[i]--;
        }
    }
    vector dp(bagWeight + 1, 0);
    for (int i = 0; i < weight.size(); i++)
    { // 遍历物品
        for (int j = bagWeight; j >= weight[i]; j--)
        { // 遍历背包容量
            dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
        }
        for (int j = 0; j <= bagWeight; j++)
        {
            cout << dp[j] << " ";
        }
        cout << endl;
    }
    cout << dp[bagWeight] << endl;
}
int main()
{
    test_multi_pack();
    return 0;
}


小结

做了这些题目后,感觉在没有系统学习dp之前,抓不住重点,有时稀里糊涂ac了,但不能完整推出来。所以说,卡尔哥的专题真的很有帮助!


四、打家劫舍


打家劫舍(LeetCode-198)

题目

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。


给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。


示例 1:

输入:[1,2,3,1]
输出:4
解释:偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。
     偷窃到的最高金额 = 1 + 3 = 4 。


示例 2:

输入:[2,7,9,3,1]
输出:12
解释:偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。
     偷窃到的最高金额 = 2 + 9 + 1 = 12 。


提示:


1 <= nums.length <= 100

0 <= nums[i] <= 400

思路

五部曲


dp[i]含义


偷窃前 i 个房子(包括房子i)可以获取的最大金额

递推公式


d p [ i ] = m a x ( d p [ i − 1 ] , d p [ i − 2 ] + n u m s [ i ] )

数组初始化


dp[0]=0 dp[1]=nums[0]

遍历顺序


从前往后

代码

class Solution
{
public:
    int rob(vector &nums)
    {
        int n = nums.size();
        if (n == 1)
        {
            return nums[0];
        }
        if (n == 2)
        {
            return max(nums[0], nums[1]);
        }
        vector dp(2);
        dp[0] = nums[0];
        dp[1] = max(nums[0], nums[1]);
        int result;
        for (int i = 2; i < n; i++)
        {
            result = max(dp[1], dp[0] + nums[i]);
            dp[0] = dp[1];
            dp[1] = result;
        }
        return result;
    }
};


打家劫舍Ⅱ(LeetCode-213)

题目

你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警 。


给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,今晚能够偷窃到的最高金额。


示例 1:

输入:nums = [2,3,2]
输出:3
解释:你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。


示例 2:

输入:nums = [1,2,3,1]
输出:4
解释:你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。
     偷窃到的最高金额 = 1 + 3 = 4 。


示例 3:

输入:nums = [1,2,3]
输出:3


提示:


1 <= nums.length <= 100

0 <= nums[i] <= 1000

思路

当房间数不超过二,不需要考虑首尾


超过二时,因为不能同时偷首尾房间,所以可以分两种情况考虑


不偷最后一间情况:盗窃范围 n u m s [ 0 : n − 2 ]

不偷第一间情况:盗窃范围 n u m s [ 1 : n − 1 ]

二者取较大值


代码展示

class Solution
{
public:
    int rob(vector &nums)
    {
        int n = nums.size();
        if (n == 1)
        {
            return nums[0];
        }
        int left = robRange(nums, 0, n - 2);
        int right = robRange(nums, 1, n - 1);
        return max(left, right);
    }
    int robRange(vector &nums, int start, int end)
    {
        if (start == end)
        {
            return nums[start];
        }
        vector dp(nums.size());
        dp[start] = nums[start];
        dp[start + 1] = max(nums[start], nums[start + 1]);
        for (int i = start + 2; i <= end; i++)
        {
            dp[i] = max(dp[i - 1], dp[i - 2] + nums[i]);
        }
        return dp[end];
    }
};


打家劫舍Ⅲ(LeetCode-337)

题目

小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为 root 。


除了 root 之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果 两个直接相连的房子在同一天晚上被打劫 ,房屋将自动报警。


给定二叉树的 root 。返回 在不触动警报的情况下 ,小偷能够盗取的最高金额 。


示例 1:


输入: root = [3,2,3,null,3,null,1]
输出: 7 
解释: 小偷一晚能够盗取的最高金额 3 + 3 + 1 = 7


示例 2:


输入: root = [3,4,5,1,3,null,1]
输出: 9
解释: 小偷一晚能够盗取的最高金额 4 + 5 = 9


提示:


树的节点数在 [1, 104] 范围内

0 <= Node.val <= 104

思路

树形数组


确定递归函数参数与返回值


返回偷和不偷两种状态下获得的金钱。下标0表示不偷当前节点获得的最大金额,下标1表示偷当前节点获得的最大金额

确定终止条件


遇到空节点,肯定返回 { 0 , 0 }

确定遍历顺序


必须后序遍历,因为要通过递归函数返回值后考虑

确定单层逻辑


如果偷当前节点


左右孩子不能偷,即左右孩子各取下标0的值相加

v a l 1 = c u r . v a l + l e f t [ 0 ] + r i g h t [ 0 ]

如果不偷当前节点


左右孩子可以考虑偷,但到底偷不偷还是要判断

v a l 2 = m a x ( l e f t [ 0 ] , l e f t [ 1 ] ) + m a x ( r i g h t [ 0 ] , r i g h t [ 1 ] )

测试用例



代码展示

class Solution
{
public:
    int rob(TreeNode *root)
    {
        vector result = robTree(root);
        return max(result[0], result[1]);
    }
    vector robTree(TreeNode *cur)
    {
        if (!cur)
        {
            return {0, 0};
        }
        vector curleft = robTree(cur->left);
        vector curright = robTree(cur->right);
        int val1 = cur->val + curleft[0] + curright[0];
        int val2 = max(curleft[0], curleft[1]) + max(curright[0], curright[1]);
        return {val2, val1};
    }
};
目录
相关文章
|
13天前
|
供应链 监控 安全
对话|企业如何构建更完善的容器供应链安全防护体系
阿里云与企业共筑容器供应链安全
171328 12
|
16天前
|
供应链 监控 安全
对话|企业如何构建更完善的容器供应链安全防护体系
随着云计算和DevOps的兴起,容器技术和自动化在软件开发中扮演着愈发重要的角色,但也带来了新的安全挑战。阿里云针对这些挑战,组织了一场关于云上安全的深度访谈,邀请了内部专家穆寰、匡大虎和黄竹刚,深入探讨了容器安全与软件供应链安全的关系,分析了当前的安全隐患及应对策略,并介绍了阿里云提供的安全解决方案,包括容器镜像服务ACR、容器服务ACK、网格服务ASM等,旨在帮助企业构建涵盖整个软件开发生命周期的安全防护体系。通过加强基础设施安全性、技术创新以及倡导协同安全理念,阿里云致力于与客户共同建设更加安全可靠的软件供应链环境。
150295 32
|
24天前
|
弹性计算 人工智能 安全
对话 | ECS如何构筑企业上云的第一道安全防线
随着中小企业加速上云,数据泄露、网络攻击等安全威胁日益严重。阿里云推出深度访谈栏目,汇聚产品技术专家,探讨云上安全问题及应对策略。首期节目聚焦ECS安全性,提出三道防线:数据安全、网络安全和身份认证与权限管理,确保用户在云端的数据主权和业务稳定。此外,阿里云还推出了“ECS 99套餐”,以高性价比提供全面的安全保障,帮助中小企业安全上云。
201959 14
对话 | ECS如何构筑企业上云的第一道安全防线
|
6天前
|
存储 人工智能 安全
对话|无影如何助力企业构建办公安全防护体系
阿里云无影助力企业构建办公安全防护体系
1251 8
|
2天前
|
机器学习/深度学习 自然语言处理 PyTorch
深入剖析Transformer架构中的多头注意力机制
多头注意力机制(Multi-Head Attention)是Transformer模型中的核心组件,通过并行运行多个独立的注意力机制,捕捉输入序列中不同子空间的语义关联。每个“头”独立处理Query、Key和Value矩阵,经过缩放点积注意力运算后,所有头的输出被拼接并通过线性层融合,最终生成更全面的表示。多头注意力不仅增强了模型对复杂依赖关系的理解,还在自然语言处理任务如机器翻译和阅读理解中表现出色。通过多头自注意力机制,模型在同一序列内部进行多角度的注意力计算,进一步提升了表达能力和泛化性能。
|
6天前
|
人工智能 自然语言处理 程序员
通义灵码2.0全新升级,AI程序员全面开放使用
通义灵码2.0来了,成为全球首个同时上线JetBrains和VSCode的AI 程序员产品!立即下载更新最新插件使用。
1268 23
|
8天前
|
机器学习/深度学习 自然语言处理 搜索推荐
自注意力机制全解析:从原理到计算细节,一文尽览!
自注意力机制(Self-Attention)最早可追溯至20世纪70年代的神经网络研究,但直到2017年Google Brain团队提出Transformer架构后才广泛应用于深度学习。它通过计算序列内部元素间的相关性,捕捉复杂依赖关系,并支持并行化训练,显著提升了处理长文本和序列数据的能力。相比传统的RNN、LSTM和GRU,自注意力机制在自然语言处理(NLP)、计算机视觉、语音识别及推荐系统等领域展现出卓越性能。其核心步骤包括生成查询(Q)、键(K)和值(V)向量,计算缩放点积注意力得分,应用Softmax归一化,以及加权求和生成输出。自注意力机制提高了模型的表达能力,带来了更精准的服务。
|
6天前
|
消息中间件 人工智能 运维
1月更文特别场——寻找用云高手,分享云&AI实践
我们寻找你,用云高手,欢迎分享你的真知灼见!
512 22
1月更文特别场——寻找用云高手,分享云&AI实践
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
|
12天前
|
人工智能 自然语言处理 API
阿里云百炼xWaytoAGI共学课DAY1 - 必须了解的企业级AI应用开发知识点
本课程旨在介绍阿里云百炼大模型平台的核心功能和应用场景,帮助开发者和技术小白快速上手,体验AI的强大能力,并探索企业级AI应用开发的可能性。