深度学习:PCA白化

简介: PCA白化

PCA白化

前置知识

一文读懂PCA

回顾PCA

PCA是在对观测数据进行基变换,新的坐标系使各数据维度线性无关,坐标系的重要程度从大到小衰减。

求解过程:

  1. 数据标准化(以远点为坐标原点)
  2. 求协方差矩阵
  3. 对协方差矩阵特征值分解找到最大方差的方向
  4. 对数据基变换

其中特征向量,就是最大方差方向,每个特征向量对应的特征值就是这个数据维度的方差。

PCA白化

PCA白化实际上就是在数据通过PCA进行基变换后再把数据进行标准化,让数据每个维度的方差全部为1。
公式推导如下:

符号定义:X:原始数据矩阵 M:原始数据协方差矩阵 设$S^{1/2}$为白化矩阵

在这里插入图片描述

对M特征值分解:
在这里插入图片描述
U就是我们要找的变换矩阵,转换数据基坐标:
$$X_{PCA}=UX$$

然后进行白化操作:
lambda为特征值
在这里插入图片描述

其中有的特征值很小,会造成数值溢出,就给它加上了1个常数项,于是把白化矩阵改为:

在这里插入图片描述

目录
相关文章
|
机器学习/深度学习 计算机视觉
深度学习常见的损失函数
深度学习常见的损失函数
248 1
深度学习常见的损失函数
|
机器学习/深度学习 人工智能 算法
探索深度学习中的卷积神经网络
随着人工智能的快速发展,深度学习已成为解决复杂问题的强大工具之一。其中,卷积神经网络(CNN)作为一种广泛应用于计算机视觉和图像识别领域的模型,受到了广泛关注和研究。
109 2
|
3月前
|
机器学习/深度学习 人工智能 算法
探索机器学习:从线性回归到深度学习
本文将带领读者从基础的线性回归模型开始,逐步深入到复杂的深度学习网络。我们将通过代码示例,展示如何实现这些算法,并解释其背后的数学原理。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和知识。让我们一起踏上这段激动人心的旅程吧!
|
7月前
|
机器学习/深度学习 人工智能 算法框架/工具
深入理解深度学习中的卷积神经网络
【8月更文挑战第4天】本文旨在探索卷积神经网络(CNN)的奥秘,从其基本构成到在图像识别领域的应用。我们将通过Python代码示例,展示如何构建一个简单的CNN模型,并讨论其在处理实际问题时的效能。文章末尾将提出一个思考性问题,激发读者对深度学习未来方向的想象。
|
8月前
|
机器学习/深度学习 算法 数据挖掘
深度学习中常用损失函数介绍
选择正确的损失函数对于训练机器学习模型非常重要。不同的损失函数适用于不同类型的问题。本文将总结一些常见的损失函数,并附有易于理解的解释、用法和示例
199 0
深度学习中常用损失函数介绍
|
机器学习/深度学习 数据处理
深度学习卷积神经网络 2
深度学习卷积神经网络
100 0
|
10月前
|
机器学习/深度学习 算法
深度学习之线性回归,使用maxnet工具
深度学习之线性回归,使用maxnet工具
110 0
|
机器学习/深度学习 TensorFlow API
【深度学习】实验10 使用Keras完成逻辑回归
【深度学习】实验10 使用Keras完成逻辑回归
111 0
|
机器学习/深度学习 API TensorFlow
【深度学习】实验09 使用Keras完成线性回归
【深度学习】实验09 使用Keras完成线性回归
79 0
|
机器学习/深度学习 Python
深度学习高维空间处理和解决
深度学习高维空间处理和解决
123 0