Flink on Yarn三部曲之一:准备工作

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
实时计算 Flink 版,5000CU*H 3个月
简介: 搭建Flink on Yarn环境并体验,本文是三部曲第一篇,将部署前的准备工作做好

欢迎访问我的GitHub

这里分类和汇总了欣宸的全部原创(含配套源码): https://github.com/zq2599/blog_demos

关于Flink on Yarn三部曲

  • 本文是《Flink on Yarn三部曲》的第一篇,整个系列由以下三篇组成:
  1. 准备工作:搭建Flink on Yarn环境前,将所有硬件、软件资源准备好;
  2. 部署和设置:部署CDH和Flink,然后做相关设置
  3. Flink实战:在Yarn环境提交Flink任务
  • 整个三部曲的实战内容如下图所示:

在这里插入图片描述

  • 接下来就从最基本的准备工作开始吧。

全文链接

  1. 《Flink on Yarn三部曲之一:准备工作》
  2. [《

Flink on Yarn三部曲之二:部署和设置
》]

  1. 《Flink on Yarn三部曲之三:提交Flink任务》

关于Flink on Yarn

  • 除了常见的standalone模式,Flink还支持将任务提交到Yarn环境执行,任务所需的计算资源由Yarn Remource Manager来分配,如下图(来自Flink官网):

在这里插入图片描述

  • 因此需要搭建一套Yarn环境,通过CDH部署Yarn、HDFS等服务是常见方式,接下来就采用此方式来部署;

部署方式

  • ansible是常用的运维工具,可以大幅度简化整个部署过程,接下来会使用ansible来完成部署工作,如果您对ansible还不够了解,请参考《ansible2.4安装和体验》,部署操作如下图所示,在一台安装了ansible的电脑上运行脚本,由ansible远程连接到一台CentOS7.7的服务器上,完成部署工作:

在这里插入图片描述

硬件准备

  • 一台可以运行ansible的电脑,我这里用的是MacBook Pro,也用CentOS验证过,都可以顺利完成部署;
  • 一台CentOS7.7的电脑用于运行Yarn和Flink(文中的CDH服务器就是指该电脑),为了操作简单,本次实战将CDH、Yarn、HDFS、Flink都部署在这一台机器上,实测发现,此电脑CPU至少要双核,内存不低于16G,如果您想用多台电脑部署CDH,建议自行修改ansible脚本来分别部署,脚本地址后面会给出;

软件版本

  1. ansible电脑操作系统:macOS Catalina 10.15(实测用CentOS也能成功)
  2. CDH服务器操作系统:CentOS Linux release 7.7.1908
  3. cm版本:6.3.1
  4. parcel版本:5.16.2
  5. flink版本:1.7.2
  • 注意:因为flink需要hadoop2.6版本,所以parcel选择了5.16.2,这里面对应的hadoop是2.6版

CDH服务器设置

  • 需要登录CDH服务器执行以下设置:
  • 检查/etc/hostname文件是否正确,如下图:

在这里插入图片描述

  • 修改/etc/hosts文件,将自己的IP地址和hostname配置上去,如下图红框所示(事实证明这一步很重要,如果不做可能导致在部署时一直卡在"分配"阶段,看agent日志显示agent下载parcel的进度一直是百分之零):

在这里插入图片描述

下载文件(ansible电脑)

  • 本次实战要准备13个文件,如下表所示(后面会给出每个文件的获取方式):
编号 文件名 简介
1 jdk-8u191-linux-x64.tar.gz Linux版的jdk安装包
2 mysql-connector-java-5.1.34.jar mysql的JDBC驱动
3 cloudera-manager-server-6.3.1-1466458.el7.x86_64.rpm cm的server安装包
4 cloudera-manager-daemons-6.3.1-1466458.el7.x86_64.rpm cm的daemon安装包
5 cloudera-manager-agent-6.3.1-1466458.el7.x86_64.rpm cm的agent安装包
6 CDH-5.16.2-1.cdh5.16.2.p0.8-el7.parcel CDH应用离线安装包
7 CDH-5.16.2-1.cdh5.16.2.p0.8-el7.parcel.sha CDH应用离线安装包sha验证码
8 flink-1.7.2-bin-hadoop26-scala_2.11.tgz flink安装包
9 hosts ansible用到的远程主机配置,里面记录了CDH6服务器的信息
10 ansible.cfg ansible用到的配置信息
11 cm6-cdh5-flink1.7-single-install.yml 部署CDH时用到的ansible脚本
12 cdh-single-start.yml 初次启动CDH时用到的ansible脚本
13 var.yml 脚本中用到的变量都在在此设值,
例如CDH包名、flink文件名等,便于维护
  • 下面是每个文件的下载地址:
  1. jdk-8u191-linux-x64.tar.gz:Oracle官网可下,另外我将jdk-8u191-linux-x64.tar.gz和mysql-connector-java-5.1.34.jar一起打包上传到csdn,您可以一次性下载,地址:https://download.csdn.net/download/boling_cavalry/12098987
  2. mysql-connector-java-5.1.34.jar:maven中央仓库可下,另外我将jdk-8u191-linux-x64.tar.gz和mysql-connector-java-5.1.34.jar一起打包上传到csdn,您可以一次性下载,地址:https://download.csdn.net/download/boling_cavalry/12098987
  3. cloudera-manager-server-6.3.1-1466458.el7.x86_64.rpm:
  4. cloudera-manager-daemons-6.3.1-1466458.el7.x86_64.rpm:
  5. cloudera-manager-agent-6.3.1-1466458.el7.x86_64.rpm:https://archive.cloudera.com/cm6/6.3.1/redhat7/yum/RPMS/x86_64/cloudera-manager-agent-6.3.1-1466458.el7.x86_64.rpm
  6. CDH-5.16.2-1.cdh5.16.2.p0.8-el7.parcel:https://archive.cloudera.com/cdh5/parcels/5.16.2/CDH-5.16.2-1.cdh5.16.2.p0.8-el7.parcel
  7. CDH-5.16.2-1.cdh5.16.2.p0.8-el7.parcel.sha
  8. flink-1.7.2-bin-hadoop26-scala_2.11.tgz:
  9. hosts、ansible.cfg、cm6-cdh5-flink1.7-single-install.yml、cdh-single-start.yml、var.yml :这五个文件都保存在我的GitHub仓库,地址是:https://github.com/zq2599/blog_demos ,这里面有多个文件夹,上述文件在名为ansible-cm6-cdh5-flink172-single的文件夹中,如下图红框所示:

在这里插入图片描述

文件摆放(ansible电脑)

  • 如果您已经下载好了上述13个文件,请按照如下位置摆放,这样才能顺利完成部署:
  • 如果您已经下载好了上述13个文件,请按照如下位置摆放,这样才能顺利完成部署:

在家目录下新建名为playbooks的文件夹:mkdir ~/playbooks

  • 如果您已经下载好了上述13个文件,请按照如下位置摆放,这样才能顺利完成部署:

把这五个文件放入playbooks文件夹:hosts、ansible.cfg、cm6-cdh5-flink1.7-single-install.yml、cdh-single-start.yml、vars.yml

  • 如果您已经下载好了上述13个文件,请按照如下位置摆放,这样才能顺利完成部署:

playbooks文件夹里新建名为cdh6的子文件夹;

  • 把这八个文件放入cdh6文件夹(即剩余的八个):jdk-8u191-linux-x64.tar.gz、mysql-connector-java-5.1.34.jar、cloudera-manager-server-6.3.1-1466458.el7.x86_64.rpm、cloudera-manager-daemons-6.3.1-1466458.el7.x86_64.rpm、cloudera-manager-agent-6.3.1-1466458.el7.x86_64.rpm、CDH-5.16.2-1.cdh5.16.2.p0.8-el7.parcel、CDH-5.16.2-1.cdh5.16.2.p0.8-el7.parcel.sha、flink-1.7.2-bin-hadoop26-scala_2.11.tgz
  • 摆放完毕后目录和文件情况如下图,再次提醒:文件夹playbooks一定要放在家目录下(即:~/):

在这里插入图片描述

ansible参数设置(ansible电脑)

  • ansible参数设置的操作设置很简单:配置好CDH服务器的访问参数即可,包括IP地址、登录账号、密码等,修改~/playbooks/hosts文件,内容如下所示,您需要根据自身情况修改deskmini、ansible_host、ansible_port、ansible_user、ansible_password:
[cdh_group]deskmini ansible_host=192.168.50.134 ansible_port=22 ansible_user=root ansible_password=888888
  • 至此,所有准备工作已完成,下一篇文章我们将完成这些操作:
  1. 部署CDH和Flink
  2. 启动CDH
  3. 设置CDH、在线安装Yarn、HDFS等
  4. 调整Yarn参数,使Flink任务可以提交成功

欢迎关注阿里云开发者社区博客:程序员欣宸

学习路上,你不孤单,欣宸原创一路相伴...
相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
27天前
|
资源调度 分布式计算 大数据
大数据-111 Flink 安装部署 YARN部署模式 FlinkYARN模式申请资源、提交任务
大数据-111 Flink 安装部署 YARN部署模式 FlinkYARN模式申请资源、提交任务
79 0
|
3月前
|
资源调度 关系型数据库 MySQL
【Flink on YARN + CDC 3.0】神操作!看完这篇教程,你也能成为数据流处理高手!从零开始,一步步教会你在Flink on YARN模式下如何配置Debezium CDC 3.0,让你的数据库变更数据瞬间飞起来!
【8月更文挑战第15天】随着Apache Flink的普及,企业广泛采用Flink on YARN部署流处理应用,高效利用集群资源。变更数据捕获(CDC)工具在现代数据栈中至关重要,能实时捕捉数据库变化并转发给下游系统处理。本文以Flink on YARN为例,介绍如何在Debezium CDC 3.0中配置MySQL连接器,实现数据流处理。首先确保YARN上已部署Flink集群,接着安装Debezium MySQL连接器并配置Kafka Connect。最后,创建Flink任务消费变更事件并提交任务到Flink集群。通过这些步骤,可以构建出从数据库变更到实时处理的无缝数据管道。
261 2
|
3月前
|
资源调度 Oracle Java
实时计算 Flink版产品使用问题之在YARN集群上运行时,如何查看每个并行度的详细处理数据情况
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
3月前
|
SQL 资源调度 数据处理
实时计算 Flink版产品使用问题之-s参数在yarn-session.sh命令中是否有效
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
2月前
|
资源调度 分布式计算 Hadoop
YARN(Hadoop操作系统)的架构
本文详细解释了YARN(Hadoop操作系统)的架构,包括其主要组件如ResourceManager、NodeManager和ApplicationMaster的作用以及它们如何协同工作来管理Hadoop集群中的资源和调度作业。
104 3
YARN(Hadoop操作系统)的架构
|
2月前
|
资源调度 分布式计算 Hadoop
使用YARN命令管理Hadoop作业
本文介绍了如何使用YARN命令来管理Hadoop作业,包括查看作业列表、检查作业状态、杀死作业、获取作业日志以及检查节点和队列状态等操作。
46 1
使用YARN命令管理Hadoop作业
|
3月前
|
资源调度 分布式计算 算法
【揭秘Yarn调度秘籍】打破资源分配的枷锁,Hadoop Yarn权重调度全攻略!
【8月更文挑战第24天】在大数据处理领域,Hadoop Yarn 是一种关键的作业调度与集群资源管理工具。它支持多种调度器以适应不同需求,默认采用FIFO调度器,但可通过引入基于权重的调度算法来提高资源利用率。该算法根据作业或用户的权重值决定资源分配比例,权重高的可获得更多计算资源,特别适合多用户共享环境。管理员需在Yarn配置文件中启用特定调度器(如CapacityScheduler),并通过设置队列权重来实现资源的动态调整。合理配置权重有助于避免资源浪费,确保集群高效运行,满足不同用户需求。
49 3
|
6月前
|
资源调度 分布式计算 Hadoop
Hadoop Yarn 核心调优参数
这是一个关于测试集群环境的配置说明,包括3台服务器(master, slave1, slave2)运行CentOS 7.5,每台有4核CPU和4GB内存。集群使用Hadoop 3.1.3,JDK1.8。Yarn核心配置涉及调度器选择、ResourceManager线程数、节点检测、逻辑处理器使用、核心转换乘数、NodeManager内存和CPU设置,以及容器的内存和CPU限制。配置完成后,需要重启Hadoop并检查yarn配置。
95 4
|
6月前
|
SQL 分布式计算 资源调度
Hadoop Yarn 配置多队列的容量调度器
配置Hadoop多队列容量调度器,编辑`capacity-scheduler.xml`,新增`hive`队列,`default`队列占总内存40%,最大60%;`hive`队列占60%,最大80%。配置包括队列容量、用户权限和应用生存时间等,配置后使用`yarn rmadmin -refreshQueues`刷新队列,无需重启集群。多队列配置可在Yarn WEB界面查看。
90 4
|
5月前
|
资源调度 分布式计算 Hadoop
实时计算 Flink版产品使用问题之yarn session模式中启动的任务链接是http IP,想把IP映射为主机hadoop,该怎么操作
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。