SQL调优指南—智能索引推荐

简介: 索引优化通常需要依赖运维或开发人员对数据库引擎内部优化和执行原理的深入理解。为优化体验和降低操作门槛,PolarDB-X推出了基于代价优化器的索引推荐功能,可根据查询语句分析并推荐索引,帮助您降低查询耗时,提升数据库性能。

注意事项

索引推荐功能仅针对您当前指定的SQL查询语句进行分析与推荐。在根据推荐的信息创建索引前,您需要评估创建该索引对其它查询的影响。

环境说明

TPC-H是业界常用的基准测试方法,由TPC委员会制定发布,用于评测数据库的分析型查询能力。TPC-H基准测试方法包含8张数据表、22条复杂的SQL查询(即Q1~Q22)。下图为执行TPC-H中的Q17(小订单收入查询)的返回信息,可查看到执行该查询语句消耗的时间为28.76秒。本文将通过智能索引推荐功能,优化该查询语句的执行效率。

  1. 查询智能索引推荐信息如需查询某个查询语句的智能索引推荐信息,您只需在该查询语句前增加EXPLAIN ADVISOR命令,示例如下:
EXPLAIN ADVISOR
SELECT sum(l_extendedprice) / 7.0 AS avg_yearly
FROM lineitem,
     part
WHERE p_partkey = l_partkey
  AND p_brand = 'Brand#23'
  AND p_container = 'MED BOX'
  AND l_quantity <
    (SELECT 0.2 * avg(`l_quantity`)
     FROM lineitem
     WHERE l_partkey = p_partkey);
  1. 执行上述命令后,PolarDB-X将返回推荐的索引创建语句、添加索引前后的代价等信息,详细的返回信息及其注释如下所示:说明
    • 本案例中,预计磁盘I/O提升百分比为3024.7%,表明使用推荐的索引将带来较大的收益。
    • 当PolarDB-X无法推荐索引时,返回信息中会建议您在业务低峰期,对目标表执行Analyze Table命令刷新统计信息(该操作会消耗较大的I/O资源)。当统计信息更新后,再次执行索引推荐可获得更准确的索引。SQL复制代码。
IMPROVE_VALUE: 2465.3%        # 预计综合代价提升百分比

IMPROVE_CPU: 59377.4% # 预计CPU提升百分比
IMPROVE_MEM: 0.4% # 预计内存提升百分比
IMPROVE_IO: 3024.7% # 预计磁盘I/O提升百分比
IMPROVE_NET: 2011.1% # 预计网络传输提升百分比
BEFORE_VALUE: 4.711359845E8 # 添加索引前综合代价值
BEFORE_CPU: 1.19405577E7 # 添加索引前CPU估算值
BEFORE_MEM: 426811.2 # 添加索引前内存消耗估算值
BEFORE_IO: 44339 # 添加索引前磁盘I/O估算值
BEFORE_NET: 47.5 # 添加索引前网络传输估算值
AFTER_VALUE: 1.83655008E7 # 添加索引后综合代价值
AFTER_CPU: 20075.8 # 添加索引后CPU估算值
AFTER_MEM: 425016 # 添加索引后内存消耗估算值
AFTER_IO: 1419 # 添加索引后磁盘I/O估算值
AFTER_NET: 2.2 # 添加索引后网络传输估算值
ADVISE_INDEX: ALTER TABLE `lineitem` ADD INDEX `__advise_index_lineiteml_partkey`(`l_partkey`);
/ ADVISE_INDEX中的内容为推荐的索引创建语句 /
NEW_PLAN: # 添加索引后预计执行计划
Project(avg_yearly="$f0 / ?0")
HashAgg($f0="SUM(l_extendedprice)")
Filter(condition="l_quantity < $16 * f17w0$o0")
SortWindow(p_partkey="p_partkey", l_partkey="l_partkey", l_quantity="l_quantity", l_extendedprice="l_extendedprice", $16&#61;&#34;$16", f5w0$o0&#61;&#34;window#0AVG($2)", Reference Windows="window#0=window(partition {1} order by [] range between UNBOUNDED PRECEDING and UNBOUNDED PRECEDING aggs [AVG($2)])")
MemSort(sort="l_partkey ASC")
BKAJoin(condition="l_partkey = p_partkey", type="inner")
Gather(concurrent=true)
LogicalView(tables="[0000,0001].part", shardCount=2, sql="SELECT `p_partkey` FROM `part` AS `part` WHERE ((`p_brand` = ?) AND (`p_container` = ?))")
Gather(concurrent=true)
LogicalView(tables="[0000,0001].lineitem", shardCount=2, sql="SELECT `l_partkey`, `l_quantity`, `l_extendedprice`, ? AS `$16` FROM `lineitem` AS `lineitem` WHERE (`l_partkey` IN (...))")
INFO: LOCAL_INDEX # 其它信息
  1. 根据推荐信息创建索引
    1. 评估创建该索引带来的收益,然后根据返回结果ADVISE_INDEX中的SQL语句创建索引。
ALTER TABLE `lineitem` ADD  INDEX `__advise_index_lineiteml_partkey`(`l_partkey`);
    1. 再次执行TPC-H中的Q17(小订单收入查询),耗时减少至1.41秒,查询效率得到大幅提升。44.png
相关文章
|
3月前
|
SQL Oracle 关系型数据库
SQL优化-使用联合索引和函数索引
在一次例行巡检中,发现一条使用 `to_char` 函数将日期转换为字符串的 SQL 语句 CPU 利用率很高。为了优化该语句,首先分析了 where 条件中各列的选择性,并创建了不同类型的索引,包括普通索引、函数索引和虚拟列索引。通过对比不同索引的执行计划,最终确定了使用复合索引(包含函数表达式)能够显著降低查询成本,提高执行效率。
|
3月前
|
SQL 关系型数据库 MySQL
如何确认SQL用了索引:详细技巧与方法
在数据库管理中,索引是提高SQL查询性能的重要手段
|
3月前
|
SQL Oracle 关系型数据库
Oracle SQL:了解执行计划和性能调优
Oracle SQL:了解执行计划和性能调优
84 1
|
3月前
|
SQL 存储 关系型数据库
SQL默认索引是什么:深入解析与技巧
在SQL数据库中,索引是一种用于提高查询性能的重要数据结构
|
3月前
|
SQL 存储 关系型数据库
SQL默认索引是什么
在SQL数据库中,索引是一种用于提高查询性能的数据结构
|
3月前
|
SQL 关系型数据库 MySQL
如何确认SQL用了索引
在数据库管理和优化过程中,确认SQL查询是否使用了索引是一个至关重要的步骤
|
3月前
|
SQL 关系型数据库 MySQL
如何确认SQL查询是否使用了索引:详细步骤与技巧
在数据库管理和优化中,确认SQL查询是否有效利用了索引是提升性能的关键步骤
|
SQL Oracle 关系型数据库
SQL调优技巧:统计信息(文末福利)
统计信息类似于战争中的侦察兵,如果情报工作没有做好,打仗就会输掉战争。同样的道理,如果没有正确地收集表的统计信息,或者没有及时地更新表的统计信息,SQL的执行计划就会跑偏,SQL也就会出现性能问题。收集统计信息是为了让优化器选择最佳执行计划,以最少的代价(成本)查询出表中的数据。
2246 0
|
SQL 索引
生产sql调优之统计信息分析
今天凌晨,又被电话叫醒了,说是有1个sql,现在跑的很慢。问题已经挺严重了,想让我看看,能不能做点什么。 首先就是和他们确认最近有什么改动,他们说这个是用了很久的sql语句了,没有任何的改动,再听他们说,之前也没有任何的问题。
900 0