SQL调优指南—SQL调优进阶—排序优化和执行

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云原生数据库 PolarDB 分布式版,标准版 2核8GB
简介: 本文介绍如何排序(Order-by)算子,以达到减少数据传输量和提高执行效率的效果。

基本概念

排序操作(Sort)语义为按照指定的ORDER BY列对输入进行排序。本文介绍均为不下推的Sort的算子的实现。如果已被下推到LogicalView中,则由存储层MySQL来选择执行方式。

排序(Sort)

PolarDB-X中的排序算子主要包括 MemSort、TopN,以及 MergeSort。

MemSort

PolarDB-X中的通用的排序实现为MemSort算子,即内存中运行快速排序(Quick Sort)算法。下面是一个用到MemSort算子的例子:


> explain select t1.name from t1 join t2 on t1.id = t2.id order by t1.name,t2.name;
Project(name="name")
  MemSort(sort="name ASC,name0 ASC")
    Project(name="name", name0="name0")
      BKAJoin(condition="id = id", type="inner")
        Gather(concurrent=true)
          LogicalView(tables="t1", shardCount=2, sql="SELECT `id`, `name` FROM `t1` AS `t1`")
        Gather(concurrent=true)
          LogicalView(tables="t2_[0-3]", shardCount=4, sql="SELECT `id`, `name` FROM `t2` AS `t2` WHERE (`id` IN ('?'))")

TopN

当SQL中ORDER BY和LIMIT一起出现时,Sort算子和Limit算子会合并成TopN算子。

TopN算子维护一个最大或最小堆,按照排序键的值,堆中始终保留最大或最小的N行数据。当处理完全部的输入数据时,堆中留下的N个行(或小于N个)就是需要的结果。


> explain select t1.name from t1 join t2 on t1.id = t2.id order by t1.name,t2.name limit 10;

Project(name="name")
TopN(sort="name ASC,name0 ASC", offset=0, fetch=?0)
Project(name="name", name0="name0")
BKAJoin(condition="id = id", type="inner")
Gather(concurrent=true)
LogicalView(tables="t1", shardCount=2, sql="SELECT `id`, `name` FROM `t1` AS `t1`")
Gather(concurrent=true)
LogicalView(tables="t2_[0-3]", shardCount=4, sql="SELECT `id`, `name` FROM `t2` AS `t2` WHERE (`id` IN ('?'))")

MergeSort

通常,只要语义允许,SQL中的排序操作会被下推到MySQL上执行,而PolarDB-X执行层只做最后的归并操作,即MergeSort。严格来说,MergeSort 不仅仅是排序,更是一种数据重分布算子(类似 Gather)。下面的SQL是对t1表进行排序,经过PolarDB-X查询优化器的优化,Sort算子被下推至各个MySQL分片中执行,最终只在上层做归并操作。


> explain select name from t1 order by name;
MergeSort(sort="name ASC")
LogicalView(tables="t1", shardCount=2, sql="SELECT `name` FROM `t1` AS `t1` ORDER BY `name`")

相比 MemSort,MergeSort 算法可以减少PolarDB-X层的内存消耗,并充分利用 MySQL 层的计算能力。

相关实践学习
快速体验PolarDB开源数据库
本实验环境已内置PostgreSQL数据库以及PolarDB开源数据库:PolarDB PostgreSQL版和PolarDB分布式版,支持一键拉起使用,方便各位开发者学习使用。
相关文章
|
18天前
|
SQL Oracle 数据库
使用访问指导(SQL Access Advisor)优化数据库业务负载
本文介绍了Oracle的SQL访问指导(SQL Access Advisor)的应用场景及其使用方法。访问指导通过分析给定的工作负载,提供索引、物化视图和分区等方面的优化建议,帮助DBA提升数据库性能。具体步骤包括创建访问指导任务、创建工作负载、连接工作负载至访问指导、设置任务参数、运行访问指导、查看和应用优化建议。访问指导不仅针对单条SQL语句,还能综合考虑多条SQL语句的优化效果,为DBA提供全面的决策支持。
47 11
|
2月前
|
SQL 缓存 监控
大厂面试高频:4 大性能优化策略(数据库、SQL、JVM等)
本文详细解析了数据库、缓存、异步处理和Web性能优化四大策略,系统性能优化必知必备,大厂面试高频。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:4 大性能优化策略(数据库、SQL、JVM等)
|
2月前
|
SQL 缓存 数据库
SQL慢查询优化策略
在数据库管理和应用开发中,SQL查询的性能优化至关重要。慢查询优化不仅可以提高应用的响应速度,还能降低服务器负载,提升用户体验。本文将详细介绍针对SQL慢查询的优化策略。
|
2月前
|
SQL 存储 BI
gbase 8a 数据库 SQL合并类优化——不同数据统计周期合并为一条SQL语句
gbase 8a 数据库 SQL合并类优化——不同数据统计周期合并为一条SQL语句
|
2月前
|
SQL 数据库
gbase 8a 数据库 SQL优化案例-关联顺序优化
gbase 8a 数据库 SQL优化案例-关联顺序优化
|
2月前
|
SQL 数据库 UED
SQL性能提升秘籍:5步优化法与10个实战案例
在数据库管理和应用开发中,SQL查询的性能优化至关重要。高效的SQL查询不仅可以提高应用的响应速度,还能降低服务器负载,提升用户体验。本文将分享SQL优化的五大步骤和十个实战案例,帮助构建高效、稳定的数据库应用。
83 3
|
2月前
|
SQL 存储 缓存
如何优化SQL查询性能?
【10月更文挑战第28天】如何优化SQL查询性能?
177 10
|
2月前
|
SQL 存储 缓存
SQL Server 数据太多如何优化
11种优化方案供你参考,优化 SQL Server 数据库性能得从多个方面着手,包括硬件配置、数据库结构、查询优化、索引管理、分区分表、并行处理等。通过合理的索引、查询优化、数据分区等技术,可以在数据量增大时保持较好的性能。同时,定期进行数据库维护和清理,保证数据库高效运行。
|
2月前
|
SQL 关系型数据库 MySQL
SQL中,可以使用 `ORDER BY` 子句来实现排序功能
【10月更文挑战第26天】SQL中,可以使用 `ORDER BY` 子句来实现排序功能
170 6
|
2月前
|
SQL 缓存 监控
SQL性能提升指南:五大优化策略与十个实战案例
在数据库性能优化的世界里,SQL优化是提升查询效率的关键。一个高效的SQL查询可以显著减少数据库的负载,提高应用响应速度,甚至影响整个系统的稳定性和扩展性。本文将介绍SQL优化的五大步骤,并结合十个实战案例,为你提供一份详尽的性能提升指南。
59 0