【数据结构与算法分析】0基础带你学数据结构与算法分析08--二叉查找树 (BST)

简介: 假设树上每个结点都存储了一项数据,如果这些数据是杂乱无章的插入树中,那查找这些数据时并不容易,需要 O(N) 的时间复杂度来遍历每个结点搜索数据。

假设树上每个结点都存储了一项数据,如果这些数据是杂乱无章的插入树中,那查找这些数据时并不容易,需要 O(N) 的时间复杂度来遍历每个结点搜索数据。


如果想要时间复杂度降到 O(log⁡N) ,则需要在常数时间内,将问题的大小缩减。如果为一个结点加上限制,比如子树上的值总比当前结点的值大,而另一边总比当前结点的值小,如此便在常数时间内可以将问题的大小减半,可以判断接下来搜索左子树还是右子树。这种加以限制的二叉树被称为 二叉查找树 (Binary Search Tree, BST)。假定 BST 中左结点总是严格小于当前结点的值,而右结点总是不小于当前结点的值。

15.png

二叉树的遍历四种方法很简单,如果将其用于 BST 上有什么效果呢:


前序遍历: 6,2,1,4,3,8,7,9

中序遍历: 1,2,3,4,6,7,8,9

后序遍历: 1,3,4,2,7,9,8,6

层序遍历: 6,2,8,1,4,7,9,3


BST 中进行查找


对 BST 的查找操作中,以下三种操作是最为简单的。


判断元素是否存在,存在时将返回 true ,反之返回 false


template <class Element>
bool contains(BinaryTreeNode<Element>* root, const Element& target) {
  if (root == nullptr) {
    return false;
  }
  if (root->data == target) {
    return true;
  }
  return contains(root->data < target ? root->right : root->left, target);
}

查找最小值并返回其结点

template <class Element>
BinaryTreeNode<Element>* find_min(BinaryTreeNode<Element>* root) {
  if (root == nullptr) {
    return nullptr;
  }
  return root->left == nullptr ? root : find_min(root->left);
}

查找最大值并返回其结点


template <class Element>
BinaryTreeNode<Element>* find_max(BinaryTreeNode<Element>* root) {
  if (root != nullptr) {
    while (root->right != nullptr) {
      root = root->right;
    }
  }
  return root;
}

16.png

// 获取下界
template <class Element>
BinaryTreeNode* get_lower_bound(BinaryTreeNode* root, const Element& target) {
  auto result = root;
  while (root != nullptr) {
    if (!(root->data < target)) {
      result = root;
      root = root->left;
    } else {
      root = root->right;
    }
  }
  return result;
}
// 获取上界
template <class Element>
BinaryTreeNode* get_upper_bound(BinaryTreeNode* root, const Element& target) {
  auto result = root;
  while (root != nullptr) {
    if (target < root->data) {
      result = root;
      root = root->left;
    } else {
      root = root->right;
    }
  }
  return result;
}


BST 中进行插入与移除操作


插入一个元素在 BST 上的操作十分简单,与 contains 函数一样,以 BST 的定义顺着 BST 向下寻找,直到结点的子结点为 nullptr 为止,将这个插入的结点挂载到这个查找到的子结点上。

17.png


如果是移除操作呢?我们一直忽略了如何在二叉树中移除一个元素,因为正常的一棵二叉树中,如果你想移除一个结点,你需要处理移除结点之后 parent 与 child 之间的关系。这并不好处理,你不确定这些 child 是否可以挂载到 parent 上,继续以 parent 的子结点出现。幸运的是,你可以直接将其值与一个 leaf 交换,并直接删除 leaf 就好,这样你就没有 parent 的担忧了。


这种交换的方式可以用于 BST 吗?当然是完全可以。现在只剩下一个问题了,如何保证在移除结点后,这棵树依然是 BST,稍微转换一下问题的问法:和哪个 leaf 交换不会影响 BST 的结构。


当然是和其前驱或者后继交换后再删除不会影响 BST 的整体结构,如果前驱或后继并不是 leaf,那么递归地交换结点的值,直到结点是 leaf 为止。如果这个结点本身就是 leaf,那不用找了,决定就是你了!


可选择前驱还是后继呢,如果结点有右子树,则代表着其后继在右子树中;如果结点有左子树,则表达其前驱在左子树中。如果没有对应的子树,代表其前驱或者后继需要回到父结点寻找,为了不必要的复杂度,一般选择在其子树中寻找前驱 / 后继结点。如果你找到了一个结点的前驱 / 后继,如果它不是 leaf,那它一定没有后继 / 前驱所对应的子树,被迫你只能一直沿着向前或向后寻找 leaf。


18.png

BST 的平均情况分析


一棵树的所有结点的深度和称为 内部路径长 (internal path length),我们尝试计算 BST 平均路径长。令 D(N) 是具有 N 个结点的某棵树 T 的内部路径长,则有 D(1)=0。一棵 N 结点树是由一棵 i(0≤i<N) 结点左子树和一棵 N−i−1 结点右子树及深度为 0 的根组成的,则可以得到递推关系

19.png

得到平均值 D(N)=O(Nlog⁡N) ,因此结点的预期深度 O(log⁡N) ,但这不意味着所有操作的平均运行时间是 O(log⁡N) 。


Weiss 在书中为我们展示了一个随机生成的 500 个结点的 BST,其期望平均深度为 9.98。

20.png

如果交替插入和删除 Θ(N^2) 次,那么树的平均期望深度将是 Θ(N) 。而下图展示了在 25 万次插入移除随机值之后树的样子,结点的平均深度为 12.51 。其中有可能的一个原因是,在移除结点时 remove 总是倾向于移除结点的前驱,而保留了结点的后继。我们可以尝试随机移除结点前驱或后继的方法来缓解这种不平衡。还有一个原因是一个给定序列,由根 (给定序列的第一个元素) 的值决定这棵树的偏向,如果根元素过大则会导致左子树的结点更多,因为序列中大部位数都小于根,反之则导致右子树结点增多。

21.png

相关文章
|
1月前
|
存储 算法 C语言
"揭秘C语言中的王者之树——红黑树:一场数据结构与算法的华丽舞蹈,让你的程序效率飙升,直击性能巅峰!"
【8月更文挑战第20天】红黑树是自平衡二叉查找树,通过旋转和重着色保持平衡,确保高效执行插入、删除和查找操作,时间复杂度为O(log n)。本文介绍红黑树的基本属性、存储结构及其C语言实现。红黑树遵循五项基本规则以保持平衡状态。在C语言中,节点包含数据、颜色、父节点和子节点指针。文章提供了一个示例代码框架,用于创建节点、插入节点并执行必要的修复操作以维护红黑树的特性。
49 1
|
8天前
|
C语言
数据结构基础详解(C语言):图的基本概念_无向图_有向图_子图_生成树_生成森林_完全图
本文介绍了图的基本概念,包括图的定义、无向图与有向图、简单图与多重图等,并解释了顶点度、路径、连通性等相关术语。此外还讨论了子图、生成树、带权图及几种特殊形态的图,如完全图和树等。通过这些概念,读者可以更好地理解图论的基础知识。
|
10天前
|
存储 算法 C语言
数据结构基础详解(C语言): 二叉树的遍历_线索二叉树_树的存储结构_树与森林详解
本文从二叉树遍历入手,详细介绍了先序、中序和后序遍历方法,并探讨了如何构建二叉树及线索二叉树的概念。接着,文章讲解了树和森林的存储结构,特别是如何将树与森林转换为二叉树形式,以便利用二叉树的遍历方法。最后,讨论了树和森林的遍历算法,包括先根、后根和层次遍历。通过这些内容,读者可以全面了解二叉树及其相关概念。
|
10天前
|
存储 机器学习/深度学习 C语言
数据结构基础详解(C语言): 树与二叉树的基本类型与存储结构详解
本文介绍了树和二叉树的基本概念及性质。树是由节点组成的层次结构,其中节点的度为其分支数量,树的度为树中最大节点度数。二叉树是一种特殊的树,其节点最多有两个子节点,具有多种性质,如叶子节点数与度为2的节点数之间的关系。此外,还介绍了二叉树的不同形态,包括满二叉树、完全二叉树、二叉排序树和平衡二叉树,并探讨了二叉树的顺序存储和链式存储结构。
|
10天前
|
存储 C语言
数据结构基础详解(C语言): 树与二叉树的应用_哈夫曼树与哈夫曼曼编码_并查集_二叉排序树_平衡二叉树
本文详细介绍了树与二叉树的应用,涵盖哈夫曼树与哈夫曼编码、并查集以及二叉排序树等内容。首先讲解了哈夫曼树的构造方法及其在数据压缩中的应用;接着介绍了并查集的基本概念、存储结构及优化方法;随后探讨了二叉排序树的定义、查找、插入和删除操作;最后阐述了平衡二叉树的概念及其在保证树平衡状态下的插入和删除操作。通过本文,读者可以全面了解树与二叉树在实际问题中的应用技巧和优化策略。
|
1月前
|
算法
【初阶数据结构】复杂度算法题篇
该方法基于如下的事实:当我们将数组的元素向右移动 k 次后,尾部 kmodn 个元素会移动至数组头部,其余元素向后移动 kmodn 个位置。
|
1月前
|
机器学习/深度学习 人工智能 算法
【人工智能】线性回归模型:数据结构、算法详解与人工智能应用,附代码实现
线性回归是一种预测性建模技术,它研究的是因变量(目标)和自变量(特征)之间的关系。这种关系可以表示为一个线性方程,其中因变量是自变量的线性组合。
40 2
|
1月前
|
算法
【初阶数据结构篇】二叉树算法题
二叉树是否对称,即左右子树是否对称.
|
1月前
|
算法 索引
【初阶数据结构篇】单链表算法题进阶
深拷贝应该正好由 n 个全新节点组成,其中每个新节点的值都设为其对应的原节点的值。
|
1月前
|
存储 算法
【初阶数据结构篇】顺序表和链表算法题
此题可以先找到中间节点,然后把后半部分逆置,最近前后两部分一一比对,如果节点的值全部相同,则即为回文。