whylogs工具库的工业实践!机器学习模型流程与效果监控 ⛵

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 本文讲解如何使用whylogs工具库,构建详细的AI日志平台,并监控机器学习模型的流程与效果。核心操作包括:环境配置、新建项目并获取ID、获取组织ID和访问Key、将配置文件写入WhyLabs、监控模型性能指标。
06d6977ac1119a577443c7f36fc118a2.png
💡 作者: 韩信子@ ShowMeAI
📘 机器学习实战系列https://www.showmeai.tech/tutorials/41
📘 本文地址https://www.showmeai.tech/article-detail/395
📢 声明:版权所有,转载请联系平台与作者并注明出处
📢 收藏 ShowMeAI查看更多精彩内容
5d67166e6c5af6b76c6f31d31317a40d.png

完整的机器学习应用过程,除了数据处理、建模优化及模型部署,也需要进行后续的效果验证跟踪和ML模型监控——它能保证模型和场景是保持匹配且有优异效果的。

5f89a811c2da0ea40c220dc330583d4f.png

模型上线后,可能会存在效果下降等问题,面临数据漂移等问题。详见ShowMeAI的文章 📘机器学习数据漂移问题与解决方案

ShowMeAI在这篇文章中,将给大家展示如何使用开源工具库 whylogs 构建详尽的 AI 日志平台并监控 ML 模型。

a946acbbdaf4a39a3f040ecfcd1778df.png

💡 日志系统&模型监控

💦 环境配置

要构建日志系统并进行模型监控,会使用到开源数据日志库📘whylogs,它可以用于捕获数据的关键统计属性。安装方式很简单,执行下列 pip 命令即可

pip install "whylogs[whylabs]"

接下来,导入所用的工具库whylogspandasos。我们也创建一份 Dataframe 数据集进行分析。

import whylogs as why
import pandas as pd
import os
# create dataframe with dataset
dataset = pd.read_csv("https://whylabs-public.s3.us-west-2.amazonaws.com/datasets/tour/current.csv")

使用 whylogs 创建的数据配置文件可以单独用于数据验证和数据漂移可视化,简单的示例如下:

import whylogs as why
import pandas as pd

#dataframe
df = pd.read_csv("path/to/file.csv")
results = why.log(df)

这里也讲解一下云端环境,即把配置文件写入 WhyLabs Observatory 以执行 ML 监控。

为了向 WhyLabs 写入配置文件,我们将 📘 创建一个帐户(免费)并获取组织 ID、Key和项目 ID,以将它们设置为项目中的环境变量。
# Set WhyLabs access keys
os.environ["WHYLABS_DEFAULT_ORG_ID"] = 'YOURORGID'
os.environ["WHYLABS_API_KEY"] = 'YOURACCESSTOKEN'
os.environ["WHYLABS_DEFAULT_DATASET_ID"] = 'PROJECTID'

💦 新建项目并获取 ID

Create Project > Set up model > Create Project,整个操作过程如下图所示:

171fe203c8c6cd8aa0e88464ba9c8602.gif

💦 获取组织 ID 和访问 Key

菜单 > 设置 > 访问令牌 > 创建访问令牌,如下图所示:

edd45435c69d7ca11fb7252c4940cdfb.gif

经过这个配置,接下来就可以将数据配置文件写入 WhyLabs。

💦 将配置文件写入 WhyLabs 以进行 ML 监控

设置访问密钥后,可以轻松创建数据集的配置文件并将其写入 WhyLabs。这使我们只需几行代码即可监控输入数据和模型预测!

# initial WhyLabs writer, Create whylogs profile, write profile to WhyLabs
writer = WhyLabsWriter()
profile= why.log(dataset)
writer.write(file=profile.view())

我们可以在 pipeline 管道的任何阶段创建配置文件,也就是说可以对每个步骤的数据进行监控。一旦完成将配置文件写入 WhyLabs,就可以检查、比较和监控数据质量和数据漂移。

fd8524df3db1235494b1c0a0c3861959.gif

上述步骤过后,只需单击一下(或创建自定义监视器)即可启用预配置的监视器,检测数据配置文件中的异常情况。设置常见的监控任务是非常容易的,也可以很清晰快捷地检测数据漂移、数据质量问题和模型性能。

ad62a07fb44f876139feacfb7ce3f740.png

配置监视器后,可以在检查输入功能时对其进行预览。

acc2da5dffca8f13c33460cc54936bbb.png

当检测到异常时,可以通过电子邮件、Slack 或 PagerDuty 发送通知。在设置 > 通知和摘要设置中设置通知首选项。

8cca62c6b813c9c391ad5ca60327800f.png

上述这些简单的步骤,我们已经完成了从 ML 管道中的任何步骤提取数据、构建日志和监控分析,并在发生异常时得到通知。

💦 监控模型性能指标

前面看到了如何监控模型输入和输出数据,我们还可以通过在预测结果来监控性能指标,例如准确度、精确度等。

要记录用于监控的性能指标,可以使用why.log_classification_metricswhy.log_regression_metrics并传入包含模型输出结果的 Dataframe。

results = why.log_classification_metrics(
         df,
         target_column = "ground_truth",
         prediction_column = "cls_output",
         score_column="prob_output"
     )
 
 profile = results.profile() 
 results.writer("whylabs").write()
注意:确保您的项目在设置中配置为分类或回归模型。

在下面的示例笔记本中查看用于性能监控的数据示例。

a873c79361cd421cb048652d74ca37e7~tplv-k3u1fbpfcp-zoom-1.image

大家想获得更多关于监控的示例 notebook 笔记本,可以查看官方 GitHub 关于 📘分类和 📘回归的代码。

参考资料

推荐阅读

e9190f41b8de4af38c8a1a0c96f0513b~tplv-k3u1fbpfcp-zoom-1.image

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
相关文章
|
13天前
|
机器学习/深度学习 存储 设计模式
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
本文探讨了数据基础设施设计中常见的一个问题:数据仓库或数据湖仓中的表格缺乏构建高性能机器学习模型所需的历史记录,导致模型性能受限。为解决这一问题,文章介绍了缓慢变化维度(SCD)技术,特别是Type II类型的应用。通过SCD,可以有效追踪维度表的历史变更,确保模型训练数据包含完整的时序信息,从而提升预测准确性。文章还从数据工程师、数据科学家和产品经理的不同视角提供了实施建议,强调历史数据追踪对提升模型性能和业务洞察的重要性,并建议采用渐进式策略逐步引入SCD设计模式。
26 8
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
|
5天前
|
机器学习/深度学习 安全 PyTorch
FastAPI + ONNX 部署机器学习模型最佳实践
本文介绍了如何结合FastAPI和ONNX实现机器学习模型的高效部署。面对模型兼容性、性能瓶颈、服务稳定性和安全性等挑战,FastAPI与ONNX提供了高性能、易于开发维护、跨框架支持和活跃社区的优势。通过将模型转换为ONNX格式、构建FastAPI应用、进行性能优化及考虑安全性,可以简化部署流程,提升推理性能,确保服务的可靠性与安全性。最后,以手写数字识别模型为例,展示了完整的部署过程,帮助读者更好地理解和应用这些技术。
37 18
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
云上一键部署 DeepSeek-V3 模型,阿里云 PAI-Model Gallery 最佳实践
本文介绍了如何在阿里云 PAI 平台上一键部署 DeepSeek-V3 模型,通过这一过程,用户能够轻松地利用 DeepSeek-V3 模型进行实时交互和 API 推理,从而加速 AI 应用的开发和部署。
|
2天前
如何看PAI产品下训练(train)模型任务的费用细节
PAI产品下训练(train)模型任务的费用细节
17 4
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
160 4
|
16天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
119 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
6天前
|
机器学习/深度学习 算法 网络安全
CCS 2024:如何严格衡量机器学习算法的隐私泄露? ETH有了新发现
在2024年CCS会议上,苏黎世联邦理工学院的研究人员提出,当前对机器学习隐私保护措施的评估可能存在严重误导。研究通过LiRA攻击评估了五种经验性隐私保护措施(HAMP、RelaxLoss、SELENA、DFKD和SSL),发现现有方法忽视最脆弱数据点、使用较弱攻击且未与实际差分隐私基线比较。结果表明这些措施在更强攻击下表现不佳,而强大的差分隐私基线则提供了更好的隐私-效用权衡。
39 14
|
1月前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
57 2
|
2月前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
61 1
|
2月前
|
机器学习/深度学习 自然语言处理 算法
深入理解机器学习算法:从线性回归到神经网络
深入理解机器学习算法:从线性回归到神经网络

热门文章

最新文章