python数据分析-pandas增删改查

简介: 当我们把数据放入DataFrame后,要数据分析就需要对数据进行进行各种操作,最常见的操作就是增删改查,特别是查,查进一步就是探查分析。

pandas增删改查

当我们把数据放入DataFrame后,要数据分析就需要对数据进行进行各种操作,最常见的操作就是增删改查,特别是查,查进一步就是探查分析。

1.pandas读取数据

import pandas as pd
frame = pd.read_csv('./test.csv', header=None, columns=['state', 'year', 'pop'])
frame.index = frame['state']

2. pandas查

查询pandas有很多不同的方式,pandas处理的数据为表格形式,即行列式,访问数据既可以通过行和列组合来访问。

  • 按行访问和按列访问

    pandas可以按照行号的切片方式来访问,如frame[0:4] 获取前5行数据
    pandas通过列名直接筛选多列的数据如frame[['pop', 'year']]获取pop和year列

  • loc和iloc 行列组合访问
    loc 是按照索引名称和列名进行查询行列数据;iloc是按照行列整数来进行查询行列数据

    # 访问索引为Ohio的行,year和pop列
    frame.loc['Ohio', ['year', 'pop']]
    
    # 访问year和pop列的所有行
    frame.loc[:, ['year', 'pop']]
    
    # 访问前4行
    frame.iloc[0:3,]
    
    # 访问前4行,第3列
    frame.iloc[0:3, 2]
  • 条件查询

    最常用的条件查询方式是通过列名直接比较,如

    • frame[frame['year'] > 2001] 表示year这一列大于2001的所有行
    • 另一种等价的写法为query: frame.query('year > 2001')

pandas增删改

pandas增加行和列的方式可以通过增加一个Series的方式

  • 增加一列
frame['age'] = frame['year'] - 1900
  • 增加一行
frame.loc[len(frame.index)] = ['1', 2, 4]

删除行和列

# 删除列(按照列名)
frame.drop(['age'], axis=1)

# 删除行(按照行的索引)
frame.drop(['Ohio'], axis=0)
frame.drop([6], axis=0)
# 替换第一行
frame[0:1] = [ 2, 1.2, 20]

# 修改第二行第3列
frame.iloc[1, 2] = 4 
目录
相关文章
|
11天前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
21天前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
【10月更文挑战第42天】本文是一篇技术性文章,旨在为初学者提供一份关于如何使用Python进行数据分析的入门指南。我们将从安装必要的工具开始,然后逐步介绍如何导入数据、处理数据、进行数据可视化以及建立预测模型。本文的目标是帮助读者理解数据分析的基本步骤和方法,并通过实际的代码示例来加深理解。
33 3
|
18天前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
|
16天前
|
存储 数据可视化 数据挖掘
Python数据分析项目:抖音短视频达人粉丝增长趋势
Python数据分析项目:抖音短视频达人粉丝增长趋势
|
20天前
|
数据采集 存储 数据可视化
Python数据分析:揭秘"黑神话:悟空"Steam用户评论趋势
Python数据分析:揭秘"黑神话:悟空"Steam用户评论趋势
|
21天前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第42天】本文将介绍如何使用Python进行数据分析和可视化。我们将从数据导入、清洗、探索性分析、建模预测,以及结果的可视化展示等方面展开讲解。通过这篇文章,你将了解到Python在数据处理和分析中的强大功能,以及如何利用这些工具来提升你的工作效率。
|
22天前
|
数据采集 数据可视化 数据挖掘
深入浅出:使用Python进行数据分析的基础教程
【10月更文挑战第41天】本文旨在为初学者提供一个关于如何使用Python语言进行数据分析的入门指南。我们将通过实际案例,了解数据处理的基本步骤,包括数据的导入、清洗、处理、分析和可视化。文章将用浅显易懂的语言,带领读者一步步掌握数据分析师的基本功,并在文末附上完整的代码示例供参考和实践。
|
22天前
|
数据采集 数据可视化 数据处理
Python数据科学:Pandas库入门与实践
Python数据科学:Pandas库入门与实践
|
23天前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
20天前
|
数据采集 数据可视化 数据挖掘
掌握Python数据分析,解锁数据驱动的决策能力
掌握Python数据分析,解锁数据驱动的决策能力