【C++】—— 模板进阶

简介: 【C++】—— 模板进阶

一、非类型模板参数

模板参数不仅有类型形参,还有非类型形参。

类型形参即:出现在模板参数列表中,跟在class或者typename之类的参数类型名称。

非类型形参:就是用一个常量作为类(函数)模板的一个参数,在类(函数)模板中可将该参数当成常量来使用。

       假如我们想要定义一个静态的栈,我们首先想到的是利用宏实现:#define N 100,在C++中用const或枚举替代,但是这些做法都不能让这个静态的栈灵活的变换,有了非类型模板参数以后,就变得很灵活。

template<class T, size_t N = 100>//<类型模板参数, 非类型模板参数>
class MyStack
{
public:
  void push(const T& x)
  {}
private:
  T _a[N];
  size_t _top;
};
int main()
{
  MyStack<int, 100> st1; //实例化出存100个数据的栈
  MyStack<int, 200> st2; //实例化出存200个数据的栈
  return 0;
}

注意:

       1. 浮点数、类对象以及字符串是不允许作为非类型模板参数的

       2. 非类型的模板参数必须在编译期就能确认结果

二、模板的特化

1.概念

通常情况下,使用模板可以实现一些与类型无关的代码,但对于一些特殊类型的可能会得到一些错误的结果,比如:以下有一个比较数据大小的函数模板

        上述代码中,我们进行了普通类型的比较和日期类的比较,普通类型通过函数模板去比较,显然是没有什么问题,但是日期类的指针去比较时(p1与p2),结果可能为1也可能为0。这是以为new出来的空间,地址是随机的,并且两者的比较时指针的比较,我们想要的是值的比较,那么此时就需要度模板进行特化,即:在原模板类的基础上,针对特殊类型所进行特殊化的实现方式。模板特化中分为函数模板特化与类模板特化。
————————————————
版权声明:本文为CSDN博主「霄沫凡」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/sjsjnsjnn/article/details/125612754

       上述代码中,我们进行了普通类型的比较和日期类的比较,普通类型通过函数模板去比较,显然是没有什么问题,但是日期类的指针去比较时(p1与p2),结果可能为1也可能为0。这是以为new出来的空间,地址是随机的,并且两者的比较时指针的比较,我们想要的是值的比较,那么此时就需要度模板进行特化,即:在原模板类的基础上,针对特殊类型所进行特殊化的实现方式。模板特化中分为函数模板特化与类模板特化。

2.函数模板的特化

函数模板的特化步骤:


1. 必须要先有一个基础的函数模板

2. 关键字template后面接一对空的尖括号<>

3. 函数名后跟一对尖括号,尖括号中指定需要特化的类型

4. 函数形参表: 必须要和模板函数的基础参数类型完全相同,如果不同编译器可能会报一些奇怪的错误。

以刚才的代码为例,对于Date*的比较需要进行特化

//首先要有基础类的模板
template<class T>
bool Compare(const T& left, const T& right)
{
  return left < right;
}
//对Date*进行特化
template< >
bool Compare<Date*&>(Date*& left, Date*& right)
{
  return *left < *right;
}

注意:一般情况下如果函数模板遇到不能处理或者处理有误的类型,为了实现简单通常都是将该函数直接给出。

3.类模板的特化

1.全特化

全特化即是将模板参数列表中所有的参数都确定化。

template<class T1, class T2>//普通类模板
class Data
{
public:
    Data() {cout<<"Data<T1, T2>" <<endl;}
private:
    T1 _d1;
    T2 _d2;
};
template<> //全特化的类模板
class Data<int, char> 
{
public:
    Data() {cout<<"Data<int, char>" <<endl;}
private:
    int _d1;
    char _d2;
};
void TestVector()
{
    Data<int, int> d1;  //调用普通类模板
    Data<int, char> d2; //调用全特化的类模板
}

2.偏特化

偏特化:任何针对模版参数进一步进行条件限制设计的特化版本。比如对于以下模板类:

template<class T1, class T2>
class Data
{
public:
    Data() {cout<<"Data<T1, T2>" <<endl;}
private:
    T1 _d1;
    T2 _d2;
};

部分特化:将模板参数类表中的一部分参数特化。

// 将第二个参数特化为int
template <class T1>
class Data<T1, int> 
{
public:
    Data() {cout<<"Data<T1, int>" <<endl;}
private:
    T1 _d1;
    int _d2;
};

参数更进一步的限制:偏特化并不仅仅是指特化部分参数,而是针对模板参数更进一步的条件限制所设计出来的一个特化版本。

//基础的模板
template<class T1, class T2>
class Data
{
public:
    Data() {cout<<"Data<T1, T2>" <<endl;}
private:
    T1 _d1;
    T2 _d2;
};
// 将第二个参数特化为int
template <class T1>
class Data<T1, int> 
{
public:
    Data() {cout<<"Data<T1, int>" <<endl;}
private:
    T1 _d1;
    int _d2;
};
//两个参数偏特化为指针类型
template <typename T1, typename T2>
class Data <T1*, T2*>
{ 
public:
    Data() {cout<<"Data<T1*, T2*>" <<endl;}
private:
    T1 _d1;
    T2 _d2;
};
//两个参数偏特化为引用类型
template <typename T1, typename T2>
class Data <T1&, T2&>
{
public:
    Data(const T1& d1, const T2& d2)
        : _d1(d1)
        , _d2(d2)
    {
         cout<<"Data<T1&, T2&>" <<endl;
    }
private:
    const T1 & _d1;
    const T2 & _d2; 
};
void test2 () 
{
    Data<double , int> d1; // 调用特化的int版本
    Data<int , double> d2; // 调用基础的模板 
    Data<int *, int*> d3; // 调用特化的指针版本
    Data<int&, int&> d4(1, 2); // 调用特化的指针版本
}

三、模板的分离编译

1.什么是分离编译

一个程序(项目)由若干个源文件共同实现,而每个源文件单独编译生成目标文件,最后将所有目标文件链接起来形成单一的可执行文件的过程称为分离编译模式。

2.模板的分离编译

假如有以下场景,模板的声明与定义分离开,在头文件中进行声明,源文件中完成定义:

// Add.h
template<class T>
T Add(const T& left, const T& right);
// Add.cpp
#include"Add.h"
template<class T> 
T Add(const T& left, const T& right) 
{
    return left + right; 
}
// main.cpp
#include"Add.h"
int main()
{
    Add(1, 2);
    Add(1.0, 2.0);
    return 0; 
}

运行结果:

1ecd1b2606ed46e9956a89f231c9802c.png

出现了链接错误。


其原因也很简单,程序一般运行起来,分为四个步骤:预处理、编译、汇编和链接;


预处理:完成头文件展开、宏替换、条件编译和去注释


编译:检查语法问题,无误后生成汇编代码


汇编:生成目标文件


链接:将多个目标文件合并成一个,并处理没有解决的地址问题


在Add.cpp中,编译器没有看到对Add模板函数的实例化,因此不会生成具体的加法函数;


在main.cpp中,调用Add<int>和Add<double>,编译器在链接时才会找其地址,但是这两个函数没有实例化没有生成具体代码,所以链接时会报错

3.解决方法

1. 将声明和定义放到一个文件 "xxx.hpp" 里面或者xxx.h其实也是可以的。推荐使用这种。

1ecd1b2606ed46e9956a89f231c9802c.png

2. 模板定义的位置显式实例化。这种方法不实用,不推荐使用。

1ecd1b2606ed46e9956a89f231c9802c.png

四、模板总结

优点

  • 模板复用了代码,节省资源,更快的迭代开发,C++的标准模板库(STL)因此而产生
  • 增强了代码的灵活性

缺陷

  • 模板会导致代码膨胀问题,也会导致编译时间变长
  • 出现模板编译错误时,错误信息非常凌乱,不易定位错误
目录
相关文章
|
3月前
|
存储 算法 C++
C++ STL 初探:打开标准模板库的大门
C++ STL 初探:打开标准模板库的大门
136 10
|
5月前
|
编译器 C++
【C++】——初识模板
【C++】——初识模板
【C++】——初识模板
|
6月前
|
程序员 C++
C++模板元编程入门
【7月更文挑战第9天】C++模板元编程是一项强大而复杂的技术,它允许程序员在编译时进行复杂的计算和操作,从而提高了程序的性能和灵活性。然而,模板元编程的复杂性和抽象性也使其难以掌握和应用。通过本文的介绍,希望能够帮助你初步了解C++模板元编程的基本概念和技术要点,为进一步深入学习和应用打下坚实的基础。在实际开发中,合理运用模板元编程技术,可以极大地提升程序的性能和可维护性。
|
2月前
|
安全 编译器 C++
【C++11】可变模板参数详解
本文详细介绍了C++11引入的可变模板参数,这是一种允许模板接受任意数量和类型参数的强大工具。文章从基本概念入手,讲解了可变模板参数的语法、参数包的展开方法,以及如何结合递归调用、折叠表达式等技术实现高效编程。通过具体示例,如打印任意数量参数、类型安全的`printf`替代方案等,展示了其在实际开发中的应用。最后,文章讨论了性能优化策略和常见问题,帮助读者更好地理解和使用这一高级C++特性。
85 4
|
2月前
|
算法 编译器 C++
【C++】模板详细讲解(含反向迭代器)
C++模板是泛型编程的核心,允许编写与类型无关的代码,提高代码复用性和灵活性。模板分为函数模板和类模板,支持隐式和显式实例化,以及特化(全特化和偏特化)。C++标准库广泛使用模板,如容器、迭代器、算法和函数对象等,以支持高效、灵活的编程。反向迭代器通过对正向迭代器的封装,实现了逆序遍历的功能。
39 3
|
2月前
|
编译器 C++
【c++】模板详解(1)
本文介绍了C++中的模板概念,包括函数模板和类模板,强调了模板作为泛型编程基础的重要性。函数模板允许创建类型无关的函数,类模板则能根据不同的类型生成不同的类。文章通过具体示例详细解释了模板的定义、实例化及匹配原则,帮助读者理解模板机制,为学习STL打下基础。
39 0
|
3月前
|
编译器 程序员 C++
【C++打怪之路Lv7】-- 模板初阶
【C++打怪之路Lv7】-- 模板初阶
28 1
|
3月前
|
存储 编译器 C++
【C++篇】引领C++模板初体验:泛型编程的力量与妙用
【C++篇】引领C++模板初体验:泛型编程的力量与妙用
59 9
|
3月前
|
编译器 C语言 C++
C++入门6——模板(泛型编程、函数模板、类模板)
C++入门6——模板(泛型编程、函数模板、类模板)
79 0
C++入门6——模板(泛型编程、函数模板、类模板)
|
3月前
|
算法 编译器 C++
【C++篇】领略模板编程的进阶之美:参数巧思与编译的智慧
【C++篇】领略模板编程的进阶之美:参数巧思与编译的智慧
104 2

相关实验场景

更多