参考来源:康师傅:https://www.bilibili.com/video/BV1iq4y1u7vj?p=145
爱编程的大李子:https://blog.csdn.net/LXYDSF/article/details/126606855
一、子查询优化
MySQL 从 4.1 版本开始支持子查询,使用子查询可以进行 SELECT 语句的嵌套查询,即一个 SELECT 查询的结果作为另一个 SELECT 语句的条件。子查询可以一次性完成很多逻辑上需要多个步骤才能完成的操作 。
子查询是 MySQL 的一项重要的功能,可以帮助我们通过一个 SQL 语句实现比较复杂的查询。但是,子查询的执行效率不高。 通常我们可以将其优化成一个连接查询
原因:
- 执行子查询时,MySQL 需要为内层查询语句的查询结果建立一个临时表 ,然后外层查询语句从临时表中查询记录。查询完毕后,再撤销这些临时表 。这样会消耗过多的 CPU 和 IO 资源,产生大量的慢查询。
- 子查询的结果集存储的临时表,不论是内存临时表还是磁盘临时表都 不会存在索引 ,所以查询性能会受到一定的影响。
- 对于返回结果集比较大的子查询,其对查询性能的影响也就越大。
在 MySQL 中,可以使用连接(JOIN)查询来替代子查询。 连接查询 不需要建立临时表,其 速度比子查询要快,如果查询中使用索引的话,性能就会更好。
举例1:查询学生表中是班长的学生信息
- 使用子查询
#创建班级表中班长的索引
CREATE INDEX idx_monitor ON class(monitor);
#查询班长的信息
EXPLAIN SELECT * FROM student stu1
WHERE stu1.`stuno` IN (
SELECT monitor
FROM class c
WHERE monitor IS NOT NULL
);
- 推荐:使用多表查询
EXPLAIN SELECT stu1.* FROM student stu1 JOIN class c
ON stu1.`stuno` = c.`monitor`
WHERE c.`monitor` IS NOT NULL;
举例2:取所有不为班长的同学
- 不推荐
#查询不为班长的学生信息
EXPLAIN SELECT SQL_NO_CACHE a.*
FROM student a
WHERE a.stuno NOT IN (
SELECT monitor FROM class b
WHERE monitor IS NOT NULL);
- 推荐
# 转换成左连接查询
EXPLAIN SELECT SQL_NO_CACHE a.*
FROM student a LEFT OUTER JOIN class b
ON a.stuno =b.monitor
WHERE b.monitor IS NULL;
尽量 不要使用 NOT IN 或者 NOT EXISTS,用 LEFT JOIN xxx ON xx WHERE xx IS NULL 替代
二、ORDER BY 排序优化
问题:在 WHERE 条件字段上加索引,但是为什么在 ORDER BY 字段上还要加索引呢?
在 MySQL 中,支持两种排序方式,分别是 FileSort 和 Index 排序。
- Index 排序中,索引可以保证数据的有序性,就不需要再进行排序,效率更高。
- FileSort 排序则一般在 内存中 进行排序,占用 CPU 较多。如果待排序的结果较大,会产生临时文件 I/O 到磁盘进行排序的情况,效率低。
优化建议:
- SQL 中,可以在 WHERE 子句和 ORDER BY 子句中使用索引,目的是在 WHERE 子句中 避免全表扫描,在 ORDER BY 子句 避免使用 FileSort 排序。当然,某些情况下全表扫描,或者 FileSort 排序不一定比索引慢。但总的来说,我们还是要避免,以提高查询效率。
- 尽量使用 Index 完成 ORDER BY 排序。如果 WHERE 和 ORDER BY 后面是相同的列就使用单索引列;如果不同就使用联合索引。
- 无法使用 Index 时,需要对 FileSort 方式进行调优。
所有的排序都是在条件过滤之后才执行的。所以,如果条件过滤大部分数据的话,剩下几百几千条数据进行排序其实并不是很消耗性能,即使索引优化了排序,但实际提升性能很有限。
1. filesort 算法
排序的字段若不在索引列上,则 filesort 会有两种算法:双路排序 和 单路排序
- 双路排序(慢)
MySQL4.1 之前是使用双路排序,字面意思就是两次扫描磁盘,最终得到数据, 读取行指针和 order by 列,对他们进行排序,然后扫描已经排序好的列表,按照列表中的值重新从列表中读取对应的数据输出
从磁盘取排序字段,在 buffer 进行排序,再从 磁盘取其他字段 。
取一批数据,要对磁盘进行两次扫描,众所周知,IO 是很耗时的,所以在 MySQL4.1 之后,出现了第二种改进的算法,就是单路排序。
- 单路排序(快)
从磁盘读取查询需要的 所有列 ,按照 order by 列在 buffer 对它们进行排序,然后扫描排序后的列表进行输出, 它的效率更快一些,避免了第二次读取数据。并且把随机 IO 变成了顺序 IO,但是它会使用更多的空间, 因为它把每一行都保存在内存中了。
单路排序的问题
- 在 sort_buffer 中,单路比多路要多占用很多空间,因为单路是把所有字段都取出,所以可能取出的数据的总大小超出了sort_buffer的容量,导致每次只能取 sort_buffer 容量大小的数据,进行排序(创建 temp 文件,多路合并),排完再取 sort_buffer 容量大小,再排…从而多次I/O。
- 单路本来想省一次 I/O 操作,反而导致了大量的 I/O 操作,反而得不偿失。
2. 优化策略
尝试提高 sort_buffer_size
不管用哪种算法,提高这个参数都会提高效率,要根据系统的能力去提高,因为这个参数是针对每个进程(connection)的 1M - 8M 之间调整。MySQL5.7,InnoDB 存储引擎默认值都是 1048576 字节,1MB。
SHOW VARIABLES LIKE '%sort_buffer_size%';
尝试提高 max_length_for_sort_data
提高这个参数,会增加改进算法的概率。
SHOW VARIABLES LIKE'%max_length_for_sort_data%';
但是如果设的太高,数据总容量超出 sort_buffer_size 的概率就增大,明显症状是高的磁盘 I/O 活动和低的处理器使用率。如果需要返回的列的总长度大于 max_length_for_sort_data,使用双路算法,否则使用单路算法。1024-8192字节之间调整。
- Order by 时 select * 是一个大忌。最好只Query需要的字段。
当 Query 的字段大小综合小于 max_length_for_sort_data,而且排序字段不是 TEXT|BLOG 类型时,会改进后的算法——单路排序,否则用老算法——多路排序。
两种算法的数据都有可能超出 sort_buffer_size 的容量,超出之后,会创建 tmp 文件进行合并排序,导致多次 I/O,但是用单路排序算法的风险会更大一些,所以要提高 sort_buffer_size
三、GROUP BY 分组优化
- group by 使用索引的原则几乎跟 order by 一致 ,group by 即使没有过滤条件用到索引,也可以直接使用索引。
- group by 先排序再分组,遵照索引建的最佳左前缀法则
- 当无法使用索引列,增大 max_length_for_sort_data 和 sort_buffer_size 参数的设置
- where 效率高于 having,能写在 where 限定的条件就不要写在 having 中了
- 减少使用 order by,和业务沟通能不排序就不排序,或将排序放到程序端去做。Order by、group by、distinct 这些语句较为耗费 CPU,数据库的 CPU 资源是极其宝贵的。
- 包含了 order by、group by、distinct 这些查询的语句,where 条件过滤出来的结果集请保持在 1000 行以内,否则 SQL 会很慢。
四、分页查询优化
一般分页查询时,通过创建覆盖索引能够比较好地提高性能。一个常见有非常头疼的问题就是 limit 2000000,10,此时需要 MySQL 排序前 2000010 记录,仅仅返回 2000000-2000010 的记录,其他记录丢弃,查询排序的代价非常大。
- 优化思路一
在索引上完成排序分页操作,最后根据主键关联回原表查询所需要的其他列内容。
EXPLAIN SELECT * FROM student t,(SELECT id FROM student ORDER BY id LIMIT 2000000,10) a
WHERE t.id = a.id;
- 优化思路二
该方案适用于主键自增的表,可以把 Limit 查询转换成某个位置的查询 。
EXPLAIN SELECT * FROM student WHERE id > 2000000 LIMIT 10;