C++模板初阶(下)

简介: C++模板初阶

②显式实例化:在函数名后的<>中指定模板参数的实际类型

template<typename Ad>
Ad Add(const Ad& a, const Ad& b)
{
  return a + b;
}
int main()
{
  int a1 = 10, a2 = 20;
  double d1 = 6.4, d2 = 4.8;
  Add<int>(a1, d1);//我们帮助编译器明确类型
  return 0;
}

我们帮助模板明确推演类型。


Ⅴ模板参数的匹配原则


①一个非模板函数可以和一个同名的函数模板同时存在

//通用加法函数
template<typename Ad>
Ad Add(const Ad& a, const Ad& b)
{
  return a + b;
}
//专门处理int的加法函数
int Add(const int& a, const int& b)
{
  return a + b;
}
int main()
{
  int a1 = 10, a2 = 20;
  double d1 = 6.4, d2 = 4.8;
  Add<int>(a1, a2);//我们帮助编译器明确类型
  return 0;
}


我想在这里问一个问题,我们调用int类型的加法函数时,编译器会自己类型推演int还是直接用现成的int加法函数呢?


编译器也会偷懒,如果这里有现成的,编译器是不会自己推演化实现的!!!


🖊对于非模板函数和同名函数模板,如果其他条件都相同,在调用时会优先调用非模板函数而不会从该模板产生出一个实例。如果模板可以产生一个具有更好匹配的函数,那么将选择模板。


那这里还有一个问题,我们难道不能实现不同类型的加法吗?其实是可以的,我们想一下函数模板类型是可以定义多个的:


template<typename T1,typename T2,......,typename Tn>

1669270445539.jpg

我们给两个函数模板类型就好了。


三、类模板


Ⅰ类模板的定义格式


template<class T1,class T2,...class Tn>
class 类模板名
{
    //类成员定义
};

类模板实例化只能显式实例化,需要在类模板名字后跟<>,然后将实例化的类型放在<>中即可,类模板名字不是真正的类,而实例化的结果才是真正的类。


// Vector类名,Vector<int>才是类型
Vector<int> s1;
Vector<double> s2;

s1和s2是同一个类模板实例化出来的,但是模板参数(一个是int,一个是double)不同,那么s1和s2就是不同的类型。


①为什么要有类模板?

typedef int T;
//template<typename T> 
class Stack
{
public:
  void Init()
  {
  _array = (T*)malloc(sizeof(T) * 3);
  if (NULL == _array)
  {
    perror("malloc申请空间失败!!!");
    return;
  }
  _capacity = 3;
  _size = 0;
  }
  void Destroy()
  {
  if (_array)
  {
    free(_array);
    _array = NULL;
    _capacity = 0;
    _size = 0;
  }
  }
private:
  void CheckCapacity()
  {
  if (_size == _capacity)
  {
    int newcapacity = _capacity * 2;
    T* temp = (T*)realloc(_array, newcapacity *
    sizeof(T));
    if (temp == NULL)
    {
    perror("realloc申请空间失败!!!");
    return;
    }
    _array = temp;
    _capacity = newcapacity;
  }
  }
private:
  T* _array;
  int _capacity;
  int _size;
};

比如说一个栈,我们想要数据类型是int,就typedef为int,我们想要数据类型为double,就typedef为double。好像类模板没有啥用处,我们typedef也可以做到不同的数据类型处理。但是typedef解决不了什么问题?比如说:我同时需要两个栈,第一个栈数据类型为double,第二个数据类型为int。那么我们这时typedef为哪种类型呢?如果typedef两个,那么类也需要拷贝两份,显然比较不合适。所以typedef它解决的是可维护性,不是所谓的泛型编程。


②类模板不支持分离编译

我们之前写类的时候,为了代码的可读性和可维护性常常定义和声明分离。那么我们在写类模板的时候是否可以呢?

/*Stack.hpp*/
#pragma once
#include<iostream>
using namespace std;
template<typename T>
class Stack
{
public:
  Stack(int capacity = 4);
  ~Stack();
  void Push(const T& x);
private:
  T* _a;
  int _top;
  int _capacity;
};
/*Stack.cpp*/
#include "Stack.hpp"
template<class T>
Stack<T>::Stack(int capacity)
{
  cout << "Stack(int capacity = )" << capacity << endl;
  _a = (T*)malloc(sizeof(T)*capacity);
  if (_a == nullptr)
  {
  perror("malloc fail");
  exit(-1);
  }
  _top = 0;
  _capacity = capacity;
}
template<class T>
Stack<T>::~Stack()
{
  cout << "~Stack()" << endl;
  free(_a);
  _a = nullptr;
  _top = _capacity = 0;
}
template<class T>
void Stack<T>::Push(const T& x)
{
  // ....
  // 扩容
  _a[_top++] = x;
}
/*test.cpp*/
#include"Stack.hpp"
int main()
{
  Stack<int> st1;
  st1.Push(1);
  return 0;
}

🖊这里需要注意,类模板中函数放在类外进行定义时,需要加模板参数列表。


我们就写了Stack类的定义和声明分离,然后我们可以运行测试一下就会发现:


1669270503309.jpg


它会报链接错误,为什么会报链接错误呢?我不是包了头文件吗?这是因为,头文件在函数实现里面展开,也就是定义的地方展开,但是它没有实例化!也就是它没有收到main函数传的推演类型,所以函数实现的文件里面还是模板,没有生成函数放进符号表。所以会链接错误。


能解决吗?可以!我们需要在函数文件里告诉它我们想让它推演的类型!

/*Stack.cpp*/
.
.
.
.
// 显示实例化
template 
class Stack<int>;

这样就解决了,但是我这只是传一个类型int,如果我还想推演实例化double类型还需要再写这样一个到函数文件。所以,很不爽。


③声明和定义都放在.h或者.hpp文件

.hpp文件是专供模板类的文件,它是.cpp和.h的结合。

#pragma once
#include<iostream>
using namespace std;
template<typename T>
class Stack
{
public:
  Stack(int capacity = 4);
  ~Stack();
  void Push(const T& x);
private:
  T* _a;
  int _top;
  int _capacity;
};
template<class T>
Stack<T>::Stack(int capacity)
{
  cout << "Stack(int capacity = )" << capacity << endl;
  _a = (T*)malloc(sizeof(T)*capacity);
  if (_a == nullptr)
  {
  perror("malloc fail");
  exit(-1);
  }
  _top = 0;
  _capacity = capacity;
}
template<class T>
Stack<T>::~Stack()
{
  cout << "~Stack()" << endl;
  free(_a);
  _a = nullptr;
  _top = _capacity = 0;
}
template<class T>
void Stack<T>::Push(const T& x)
{
  // ....
  // 扩容
  _a[_top++] = x;
}
相关文章
|
23天前
|
编译器 C++
【C++】——初识模板
【C++】——初识模板
30 1
【C++】——初识模板
|
2月前
|
程序员 C++
C++模板元编程入门
【7月更文挑战第9天】C++模板元编程是一项强大而复杂的技术,它允许程序员在编译时进行复杂的计算和操作,从而提高了程序的性能和灵活性。然而,模板元编程的复杂性和抽象性也使其难以掌握和应用。通过本文的介绍,希望能够帮助你初步了解C++模板元编程的基本概念和技术要点,为进一步深入学习和应用打下坚实的基础。在实际开发中,合理运用模板元编程技术,可以极大地提升程序的性能和可维护性。
|
1月前
|
编译器 C++
【C++】模板初级
【C++】模板初级
|
1月前
|
安全 编译器 C++
【C++】模板进阶
【C++】模板进阶
|
30天前
|
并行计算 测试技术 开发工具
【简历模板】c/c++软件工程师
【简历模板】c/c++软件工程师
40 0
|
2月前
|
安全 编译器 C++
C++一分钟之-模板元编程实例:类型 traits
【7月更文挑战第15天】C++的模板元编程利用编译时计算提升性能,类型traits是其中的关键,用于查询和修改类型信息。文章探讨了如何使用和避免过度复杂化、误用模板特化及依赖特定编译器的问题。示例展示了`is_same`类型trait的实现,用于检查类型相等。通过`add_pointer`和`remove_reference`等traits,可以构建更复杂的类型转换逻辑。类型traits增强了代码效率和安全性,是深入C++编程的必备工具。
49 11
|
2月前
|
编译器 C++ 容器
C++一分钟之-可变模板参数与模板模板参数
【7月更文挑战第21天】C++的模板实现泛型编程,C++11引入可变模板参数和模板模板参数增强其功能。可变模板参数(如`print`函数)用于处理任意数量的参数,需注意展开参数包和递归调用时的处理。模板模板参数(如`printContainer`函数)允许将模板作为参数,需确保模板参数匹配和默认值兼容。这些特性增加灵活性,但正确使用是关键。
42 4
|
2月前
|
Java 编译器 Linux
【c++】模板进阶
本文详细介绍了C++中的模板技术,包括非类型模板参数的概念、如何使用它解决静态栈的问题,以及模板特化,如函数模板特化和类模板特化的过程,以提升代码的灵活性和针对性。同时讨论了模板可能导致的代码膨胀和编译时间增加的问题。
24 2
|
2月前
|
编译器 C语言 C++
【C++】模板初阶(下)
C++的函数模板实例化分为隐式和显式。隐式实例化由编译器根据实参推断类型,如`Add(a1, a2)`,但`Add(a1, d1)`因类型不一致而失败。显式实例化如`Add&lt;double&gt;(a1, d1)`则直接指定类型。模板函数不支持自动类型转换,优先调用非模板函数。类模板类似,用于创建处理多种数据类型的类,如`Vector&lt;T&gt;`。实例化类模板如`Vector&lt;int&gt;`和`Vector&lt;double&gt;`创建具体类型对象。模板使用时,函数模板定义可分头文件和实现文件,但类模板通常全部放头文件以避免链接错误。
|
2月前
|
机器学习/深度学习 算法 编译器
【C++】模板初阶(上)
**C++模板简介** 探索C++泛型编程,通过模板提升代码复用。模板作为泛型编程基础,允许编写类型无关的通用代码。以`Swap`函数为例,传统方式需为每种类型编写单独函数,如`Swap(int&)`、`Swap(double&)`等,造成代码冗余。函数模板解决此问题,如`template&lt;typename T&gt; void Swap(T&, T&)`,编译器根据实参类型推导生成特定函数,减少重复代码,增强可维护性。模板分函数模板和类模板,提供处理不同数据类型但逻辑相似的功能。