深度学习基础:标量、向量、矩阵、张量

简介: 深度学习基础:标量、向量、矩阵、张量

深度学习基础:标量、向量、矩阵、张量

标量(scalar)

标量是一个独立存在的数,比如线性代数中的一个实数5就可以被看作一个标量,所以标量的运算相对简单,与平常做的算数运算类似。

向量(vector)

向量指一列顺序排列的元素,我们通常习惯用括号将这些元素扩起来,其中每个元素都又一个索引值来唯一的确定其中在向量中的位置。
在这里插入图片描述

矩阵(matrix)

矩阵是二维数组,其中的每一个元素被两个索引而非一个所确定,我们通常会赋值矩阵粗体大写变量名称,比如一个实数矩阵Height=m,Weight=n,如图所示在这里插入图片描述
矩阵在机器学习中用到的很多,比如我们有N个用户,每个用户有M个特征,那这个数据集就可以用一个NM的矩阵表示,还有在卷积神经网路中我们输入模型的最初的数据是一个图片,我们读取图片上的像素点(Pixel)作为输入,一张256256的一张图片,实质上就可以用256*256的矩阵表示。

张量(tensor)

在几何代数中,张量是基于向量和矩阵的推广,通俗一点理解的话,我们可以将标量是为0阶张量,矢量视为一阶张量,矩阵视为二阶张量,例如一张彩色图片,可以表示成一个三阶张量,因为彩色图片的每个像素点可以看成一个(RGB)3*1的矩阵[12,242,43](也可以看作二维张量),然后我们把这些像素点拼接成一个面,就变成了三维张量,如图所示:在这里插入图片描述

目录
相关文章
|
29天前
|
机器学习/深度学习 并行计算 测试技术
每天五分钟深度学习:解决for循环效率慢的关键在于向量化
向量化是提升计算效率的重要技术,尤其是在处理大规模数据和进行复杂运算时。通过将for循环转换为向量或矩阵运算,向量化能够充分利用底层高效库和现代CPU的并行计算能力,从而大幅提高运算速度。在深度学习中,向量化是实现高效神经网络训练和预测的关键。
65 23
|
27天前
|
机器学习/深度学习 并行计算 测试技术
每天五分钟深度学习:解决for循环效率慢的关键在于向量化
通过本文的介绍,希望读者能够理解向量化的基本概念、优势及其在实际应用中的重要性,并能够在日常的深度学习工作中灵活应用向量化技术,从而提升工作效率和代码性能。
82 13
|
5月前
|
机器学习/深度学习 算法 PyTorch
【深度学习】TensorFlow面试题:什么是TensorFlow?你对张量了解多少?TensorFlow有什么优势?TensorFlow比PyTorch有什么不同?该如何选择?
关于TensorFlow面试题的总结,涵盖了TensorFlow的基本概念、张量的理解、TensorFlow的优势、数据加载方式、算法通用步骤、过拟合解决方法,以及TensorFlow与PyTorch的区别和选择建议。
298 2
|
5月前
|
机器学习/深度学习 Serverless 数据处理
《零基础实践深度学习》 Numpy 线性代数 应用举例 张量表示
这篇文章介绍了NumPy在线性代数中的应用,包括矩阵操作和文件读写功能,并提供了使用NumPy进行图片处理和激活函数计算的示例,同时探讨了飞桨框架中张量(Tensor)的使用和与NumPy数组的转换。
|
8月前
|
机器学习/深度学习 存储 PyTorch
PyTorch深度学习基础:张量(Tensor)详解
【4月更文挑战第17天】本文详细介绍了PyTorch中的张量,它是构建和操作深度学习数据的核心。张量是多维数组,用于存储和变换数据。PyTorch支持CPU和GPU张量,后者能加速大规模数据处理。创建张量可通过`torch.zeros()`、`torch.rand()`或直接从Python列表转换。张量操作包括数学运算、切片和拼接。在深度学习中,张量用于神经网络模型的构建和训练。理解张量对于掌握PyTorch至关重要。
|
8月前
|
机器学习/深度学习 自然语言处理 TensorFlow
在Python中进行深度学习的数据准备和向量化
在Python中进行深度学习的数据准备和向量化
109 3
|
8月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【深度学习】Pytorch Tensor 张量
【1月更文挑战第10天】【深度学习】Pytorch Tensor 张量
|
8月前
|
机器学习/深度学习 自然语言处理 算法
【Tensorflow深度学习】优化算法、损失计算、模型评估、向量嵌入、神经网络等模块的讲解(超详细必看)
【Tensorflow深度学习】优化算法、损失计算、模型评估、向量嵌入、神经网络等模块的讲解(超详细必看)
112 1
|
8月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch深度学习基础之Tensor对象及其应用的讲解及实战(附源码 简单易懂 包括分段 映射 矩阵乘法 随机数等等)
PyTorch深度学习基础之Tensor对象及其应用的讲解及实战(附源码 简单易懂 包括分段 映射 矩阵乘法 随机数等等)
95 1
|
8月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【深度学习】Pytorch Tensor 张量
【1月更文挑战第26天】【深度学习】Pytorch Tensor 张量