【C++】C++ 入门(3)

简介: 【C++】C++ 入门(3)

七、auto 关键字 (C++11)

1、类型名思考

在代码编写过程中,随着程序越来越复杂,程序中用到的类型也越来越复杂,经常体现在:

  • 类型难于拼写;
  • 含义不明确导致容易出错;

例如下面 m 和 it 变量的类型:

#include <string>
#include <map>
int main()
{
  std::map<std::string, std::string> m{ { "apple", "苹果" }, { "orange","橙子" },{"pear","梨"} };
  std::map<std::string, std::string>::iterator it = m.begin();
  while (it != m.end())
  {
    //....
  }
  return 0;
}

std::map::iterator 是一个类型,但是该类型太长了,特别容易写错;可能聪明的同学可能已经想到:我们可以通过 typedef 给类型取别名,比如:

#include <string>
#include <map>
typedef std::map<std::string, std::string> Map;
int main()
{
  Map m{ { "apple", "苹果" },{ "orange", "橙子" }, {"pear","梨"} };
  {
    //....
  }
  return 0;
}

使用typedef给类型取别名确实可以简化代码,但是 typedef 有时会遇到新的难题:

2020062310470442.png

2、auto 的概念

在早期C/C++中auto的含义是:使用auto修饰的变量,是具有自动存储器的局部变量,但遗憾的是一直没有人去使用它;因为当函数调用结束后,函数的栈帧会被销毁,那么存在于函数栈帧中的局部变量自然也会被销毁,这就使得 auto 修饰失去了意义;


而在C++11中,标准委员会赋予了auto全新的含义即:auto不再是一个存储类型指示符,而是作为一个新的类型指示符来指示编译器,auto声明的变量必须由编译器在编译时期推导而得。

int TestAuto()
{
  return 10;
}
int main()
{
  int a = 10;
  auto b = a;
  auto c = 'a';
  auto d = TestAuto();
  //auto e;  //无法通过编译,使用auto定义变量时必须对其进行初始化
  cout << typeid(b).name() << endl;
  cout << typeid(c).name() << endl;
  cout << typeid(d).name() << endl;
  return 0;
}

2020062310470442.png

注意:使用auto定义变量时必须对其进行初始化,在编译阶段编译器需要根据初始化表达式来推导auto 的实际类型;因此auto并非是一种“类型”的声明,而是一个类型声明时的“占位符”,编译器在编译期会将auto替换为变量实际的类型。

3、auto 的使用细则

auto与指针和引用结合起来使用

用auto声明指针类型时,用auto和auto*没有任何区别,但用auto声明引用类型时则必须加&:

2020062310470442.png

在同一行定义多个变量

在同一行声明多个变量时,这些变量必须是相同的类型,否则编译器将会报错,因为编译器实际只对第一个类型进行推导,然后用推导出来的类型定义其他变量:

2020062310470442.png

4、auto 不能推倒的场景

(1)、auto不能作为函数的参数,因为不是所有的参数都有初始化表达式,因此编译器可能无法推导出a的实际类型,所以直接规定auto不能作为函数形参:

2020062310470442.png

(2)、 auto不能直接用来声明数组:数组需要根据元素类型及个数来开辟空间,而数组名代表指针,因此 auto 无法推导:

2020062310470442.png

(3)、为了避免与C++98中的auto发生混淆,C++11只保留了auto作为类型指示符的用法;

(4)、auto在实际中最常见的优势用法就是跟C++11提供的新式for循环,还有lambda表达式等进行配合使用。

八、基于范围的 for 循环 (C++11)

1、范围 for 的用法

在C++98中如果要遍历一个数组,可以按照以下方式进行:

void TestFor()
{
  int array[] = { 1, 2, 3, 4, 5 };
  for (int i = 0; i < sizeof(array) / sizeof(array[0]); ++i)
    array[i] *= 2;
  for (int* p = array; p < array + sizeof(array) / sizeof(array[0]); ++p)
    cout << *p << endl;
}

对于一个有范围的集合而言,由程序员来说明循环的范围是多余的,有时候还会容易犯错误;因此 C++11 中引入了基于范围的for循环。for循环后的括号被冒号分为两部分:第一部分是范围内用于迭代的变量,第二部分则表示被迭代的范围。

void TestFor()
{
  int array[] = { 1,2,3,4,5 };
  //使用引用进行迭代--可以修改原数组
  for (auto& e : array)
    e *= 2;
  //使用局部变量进行迭代--不能修改原数组
  for (auto e : array)
    cout << e << " ";
  cout << endl;  //换行
}

2020062310470442.png

注意:与普通循环类似,可以用continue来结束本次循环,也可以用break来跳出整个循环;

2、范围 for 的使用条件

范围 for 的使用有如下条件限制:

(1)、for循环迭代的范围必须是确定的:对于数组而言,就是数组中第一个元素和最后一个元素的范围;对于类而言,应该提供 begin 和 end 的方法,begin 和 end 就是 for 循环迭代的范围;比如下面代码的范围就是不确定的:

void TestFor(int array[])
{
    for(auto& e : array)
        cout<< e <<endl;
}

(2)、 迭代的对象要实现++和==的操作;(关于迭代器我们以后会学习,现在大家了解一下就可以了)

九、指针空值 nullptr (C++11)

在C语言中,通常我们在定义一个指针变量的时候会将其初始化为 NULL,避免后面对其错误使用造成野指针越界访问问题;其实这里的 NULL 是C语言中定义的一个,在传统的C头文件(stddef.h)中,可以看到如下代码:

#ifndef NULL
#ifdef __cplusplus
#define NULL   0
#else
#define NULL   ((void *)0)
#endif
#endif

我们可以看到,对于C语言来说,NULL 其实是数字0被强转为指针类型,相当于0处的地址;而对于C++来说,NULL 则被直接解释为数字0;虽然 0 和 (void*)0 二者在数值上相同,但是他们的类型是不相同的,一个是整形,另一个是指针;这就导致使用时会出现一些问题,比如下面这个例子:

void f(int)
{
  cout << "f(int)" << endl;
}
void f(int*)
{
  cout << "f(int*)" << endl;
}
int main()
{
  f(0);
  f(NULL);
  f((int*)NULL);
  return 0;
}

2020062310470442.png

程序本意是想通过 f(NULL) 调用指针版本的 f(int*) 函数,但是由于NULL被定义成0,因此与程序的初衷相悖;


在C++98中,字面常量0既可以是一个整形数字,也可以是无类型的指针 (void*) 常量,但是编译器 默认情况下将其看成是一个整形常量,如果要将其按照指针方式来使用,必须对其进行强转为 (void *)0。


为了解决这个问题,C++11中专门为空指针设计了一个关键字 – nullptr,用来弥补C++98中空指针NULL存在的缺陷。(可以认为,nullptr 就是 (void*)0 )


nullptr 注意事项

  • 在使用nullptr表示指针空值时,不需要包含头文件,因为nullptr是C++11作为新关键字引入 的;
  • 在C++11中,sizeof(nullptr) 与 sizeof((void*)0)所占的字节数相同;
  • 为了提高代码的健壮性,在后续表示指针空值时建议最好使用nullptr;

型是不相同的,一个是整形,另一个是指针;这就导致使用时会出现一些问题,比如下面这个例子:

void f(int)
{
  cout << "f(int)" << endl;
}
void f(int*)
{
  cout << "f(int*)" << endl;
}
int main()
{
  f(0);
  f(NULL);
  f((int*)NULL);
  return 0;
}

2020062310470442.png

程序本意是想通过 f(NULL) 调用指针版本的 f(int*) 函数,但是由于NULL被定义成0,因此与程序的初衷相悖;


在C++98中,字面常量0既可以是一个整形数字,也可以是无类型的指针 (void*) 常量,但是编译器 默认情况下将其看成是一个整形常量,如果要将其按照指针方式来使用,必须对其进行强转为 (void *)0。


为了解决这个问题,C++11中专门为空指针设计了一个关键字 – nullptr,用来弥补C++98中空指针NULL存在的缺陷。(可以认为,nullptr 就是 (void*)0 )

nullptr 注意事项

  • 在使用nullptr表示指针空值时,不需要包含头文件,因为nullptr是C++11作为新关键字引入 的;
  • 在C++11中,sizeof(nullptr) 与 sizeof((void*)0)所占的字节数相同;
  • 为了提高代码的健壮性,在后续表示指针空值时建议最好使用nullptr;


相关文章
|
1月前
|
安全 编译器 程序员
【C++初阶】C++简单入门
【C++初阶】C++简单入门
|
2月前
|
程序员 C++
C++模板元编程入门
【7月更文挑战第9天】C++模板元编程是一项强大而复杂的技术,它允许程序员在编译时进行复杂的计算和操作,从而提高了程序的性能和灵活性。然而,模板元编程的复杂性和抽象性也使其难以掌握和应用。通过本文的介绍,希望能够帮助你初步了解C++模板元编程的基本概念和技术要点,为进一步深入学习和应用打下坚实的基础。在实际开发中,合理运用模板元编程技术,可以极大地提升程序的性能和可维护性。
|
17天前
|
编译器 Linux C语言
C++基础入门
C++基础入门
|
1月前
|
安全 编译器 C++
C++入门 | 函数重载、引用、内联函数
C++入门 | 函数重载、引用、内联函数
25 5
|
1月前
|
存储 安全 编译器
C++入门 | auto关键字、范围for、指针空值nullptr
C++入门 | auto关键字、范围for、指针空值nullptr
49 4
|
1月前
|
编译器 C语言 C++
C++入门 | 命名空间、输入输出、缺省参数
C++入门 | 命名空间、输入输出、缺省参数
33 4
|
1月前
|
编译器 程序员 C语言
C++入门
C++入门
31 5
|
1月前
|
安全 编译器 C语言
C++入门-数组
C++入门-数组
|
1月前
|
存储 编译器 程序员
C++从遗忘到入门
本文主要面向的是曾经学过、了解过C++的同学,旨在帮助这些同学唤醒C++的记忆,提升下自身的技术储备。如果之前完全没接触过C++,也可以整体了解下这门语言。
|
2月前
|
存储 安全 编译器
【C++入门 四】学习C++内联函数 | auto关键字 | 基于范围的for循环(C++11) | 指针空值nullptr(C++11)
【C++入门 四】学习C++内联函数 | auto关键字 | 基于范围的for循环(C++11) | 指针空值nullptr(C++11)