【实验】阿里云大数据助理工程师认证(ACA)- ACA认证配套实验-03-MaxCompute内置函数(下)

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 【实验】阿里云大数据助理工程师认证(ACA)- ACA认证配套实验-03-MaxCompute内置函数(下)

第 2 章:实验详情


2.1 数值类函数


(1) 三角函数类

已知三角形两边长度为10,20,夹角为60度,求三角形面积

select 0.51020sin(60/1803.1415926) from dual;

输入sql脚本,点击【运行】,查看结果

20200706081140458.png


(2) 数字整形类:


对数字进行加工处理,请分别显示数字 3.1415926 的向上取整值、向下取整值、四舍五入保留3位小数的值、截掉小数位的值以及用二进制来表示该值。

Select ceil(3.1415926),
floor(3.1415926),
round(3.1415926,3),
trunc(3.1415926),
conv(‘3.1415926’,10,2)
from dual;

输入脚本,点击【运行】,查看结果

20200706081200461.png

(3) 随机函数类:

select rand() from dual;
select rand(detail_id),rand() from t_dml limit 10;

输入sql脚本,点击【运行】,查看结果

20200706081222725.png

(4) 综合使用
  使用蒙特卡洛法求π值的近似值:产生一系列的成对的随机数,根据每队随机数到点(0.5,0.5)的距离可判断该点是否在单位圆内,计算落在圆内的点占所有点的比例,即可得到π值的近似值:
     // 产生约10万对随机点进行近似值计算:
select (inCircle/totalCnt)/pow(0.5,2) as PI 
from (select count(*) as totalCnt,
sum(case when sqrt(pow((x-0.5),2)+pow((y-0.5),2)) <0.5 then 1 else 0 end) inCircle
from (select /*+mapjoin(t2)*/ rand() as x,rand() as y
from (select * from t_dml limit 10000) t1
left outer join (select * from t_dml limit 10) t2
 on t1.detail_id <> t2.detail_id) tt
) t;
// 产生约100万对随机点进行近似值计算:
select (inCircle/totalCnt)/pow(0.5,2) as PI
from (select count(*) as totalCnt,
sum(case when sqrt(pow((x-0.5),2)+pow((y-0.5),2)) <0.5 then 1 else 0 end) inCircle
from (select /*+mapjoin(t2)*/ rand() as x,rand() as y
from (select * from t_dml limit 10000) t1
left outer join (select * from t_dml limit 100) t2
on t1.detail_id <> t2.detail_id) tt
) t;

输入脚本,点击【运行】,查看结果:

202007060812529.png

输入脚本,点击【运行】,查看结果:

20200706081312575.png

2.2 字符串类函数


(1) 长度类:


输入脚本,点击【运行】,查看结果

select province,length(province),lengthb(province) from t_dml limit 10;

20200706081341572.png

(2) 查找类:

目前销售记录中,哪些省、市名字比较接近?


select province, city, char_matchcount(province, city) as sim


 from (select distinct province, city
          from t_dml) t

order by sim desc

limit 10;


输入脚本,点击【运行】,查看结果

2020070608140294.png

目前销售记录中,省份的第一个字在城市名中是否出现?有没有出现多次的?


select province, city,


instr(city,substr(province,1,3),1,1) as FirstPos,


case when instr(city,substr(province,1,3),1,2) = 0 then ‘No’


else ‘Yes’


end as SecondPos

 from (select distinct province, city
          from t_dml) t

order by SecondPos desc, FirstPos desc

limit 10;


输入脚本,点击【运行】,查看结果

20200706081424289.png


(3) 转换类:


要把数据从一个编码为 utf8 的库导入到一个字符集为 gb2132 的库中,其中有些繁体字,如“阿裏雲”等字样,请问会出现乱码的情况吗?


select is_encoding(‘阿裏雲’, ‘utf-8’, ‘gb2312’) from dual;


输入脚本,点击【运行】,查看结果

2020070608144692.png

(4) 整形类:


select concat(province, ‘|’,city) from t_dml limit 10;


select category_name, tolower(split_part(category_name,' ',2))


from t_product;

输入脚本,点击【运行】,查看结果

20200706081505275.png

输入脚本,点击【运行】,查看结果

20200706081525306.png


2.3 日期类函数


(1) 日期获取:

//根据日期,截取部分信息

select dt,

datepart(dt, ‘yyyy’) as year,

             datepart(dt, 'mm') as month,
             datepart(dt, 'dd') as day,
             datepart(dt, 'hh') as hour,
             datepart(dt, 'mi') as minute,


datepart(dt, ‘ss’) as second

from (select getdate() dt from dual) t;


输入脚本,点击【运行】,查看结果

2020070608155682.png

// 日期截取

select datetrunc(‘2015-01-31 02:30:45’, ‘dd’) from dual;

输入脚本,点击【运行】,查看结果

20200706081617427.png


// 获得具体日期


select getdate(),lastday(getdate()),weekday(getdate()),weekofyear(getdate())


from dual;


输入脚本,点击【运行】,查看结果

2020070608163732.png


(2) 日期转换:


//字符串转成日期, 日期转换成字符串

select to_date(‘20150131’,‘yyyymmdd’),
to_char(‘2015-01-31 00:00:00’, ‘日期:yyyymmdd’)
from dual;

输入脚本,点击【运行】,查看结果

20200706081657423.png

// Unix时间和ODPS时间互转

select from_unixtime(1), unix_timestamp(‘2015-10-01 00:00:00’) from dual;

输入脚本,点击【运行】,查看结果

20200706081716326.png

// 判断字符串是否满足预定义的日期格式

select sale_date, isdate(sale_date, ‘yyyymmdd’) from t_dml limit 10;

输入脚本,点击【运行】,查看结果

20200706081734939.png


(3) 日期运算:


统计5月1日从产品5第一次成交后一小时三十分钟内(含),产品5销量(含第一次成交)占同期总销量的比例:

select /+mapjoin(t2)/
sum(case when product_id=5 then cnt else 0 end)/sum(cnt)
 from t_dml t1
    join (select min(sale_date) as begin_dt,
                          dateadd(dateadd(min(sale_date),1,'hh'),30, 'mi') as end_dt
                 from t_dml
         where product_id=5
                   and datetrunc(sale_date,'dd')='2015-05-01 00:00:00')t2
       on t1.sale_date >= t2.begin_dt
  and t1.sale_date <= t2.end_dt;

输入脚本,点击【运行】,查看结果

20200706081756381.png

日期相减:

select max(sale_date), min(sale_date),
datediff(max(sale_date),min(sale_date),‘dd’)
from t_dml;

输入脚本,点击【运行】,查看结果

20200706081816611.png


第 3 章:实验总结


3.1 实验总结


MaxCompute的这几类函数基本覆盖了我们日常工作的绝大多数数据处理需求,通过灵活熟练的使用这些函数,

可以提升开发效率,若仍有无法满足的需求,还可以考虑自定义函数。


第 4 章:课后任务


4.1 课后任务


1、计算t_dml表中最大的日期距离2017-08-01的天数

2、计算t_dml表中province字段,以“省”结尾的值的个数

3、计算t_product表各产品价格与产品对应分类下所有产品平均价格的差额,输出产品id和价格差额

目录
相关文章
|
4月前
|
Oracle 关系型数据库 数据库
阿里云数据库 ACP 问题之阿里云数据库ACP认证与ACA认证有什么区别
阿里云数据库 ACP 问题之阿里云数据库ACP认证与ACA认证有什么区别
173 1
阿里云数据库 ACP 问题之阿里云数据库ACP认证与ACA认证有什么区别
|
4月前
|
分布式计算 搜索推荐 物联网
大数据及AI典型场景实践问题之通过KafKa+OTS+MaxCompute完成物联网系统技术重构如何解决
大数据及AI典型场景实践问题之通过KafKa+OTS+MaxCompute完成物联网系统技术重构如何解决
|
4月前
|
人工智能 分布式计算 架构师
大数据及AI典型场景实践问题之基于MaxCompute构建Noxmobi全球化精准营销系统如何解决
大数据及AI典型场景实践问题之基于MaxCompute构建Noxmobi全球化精准营销系统如何解决
|
4月前
|
SQL 存储 分布式计算
MaxCompute 入门:大数据处理的第一步
【8月更文第31天】在当今数字化转型的时代,企业和组织每天都在产生大量的数据。有效地管理和分析这些数据变得至关重要。阿里云的 MaxCompute(原名 ODPS)是一个用于处理海量数据的大规模分布式计算服务。它提供了强大的存储能力以及丰富的数据处理功能,让开发者能够快速构建数据仓库、实时报表系统、数据挖掘等应用。本文将介绍 MaxCompute 的基本概念、架构,并演示如何开始使用这一大数据处理平台。
646 0
|
4月前
|
SQL 分布式计算 大数据
"大数据计算难题揭秘:MaxCompute中hash join内存超限,究竟该如何破解?"
【8月更文挑战第20天】在大数据处理领域,阿里云的MaxCompute以高效稳定著称,但复杂的hash join操作常导致内存超限。本文通过一个实例解析此问题:数据分析师小王需对两个共计300GB的大表进行join,却遭遇内存不足。经分析发现,单个mapper任务内存默认为2GB,不足以支持大型hash表的构建。为此,提出三种解决方案:1) 提升mapper任务内存;2) 利用map join优化小表连接;3) 实施分而治之策略,将大表分割后逐一处理再合并结果。这些方法有助于提升大数据处理效率及稳定性。
93 0
|
4月前
|
SQL 分布式计算 大数据
"揭秘MaxCompute大数据秘术:如何用切片技术在数据海洋中精准打捞?"
【8月更文挑战第20天】在大数据领域,MaxCompute(曾名ODPS)作为阿里集团自主研发的服务,提供强大、可靠且易用的大数据处理平台。数据切片是其提升处理效率的关键技术之一,它通过将数据集分割为小块来优化处理流程。使用MaxCompute进行切片可显著提高查询性能、支持并行处理、简化数据管理并增强灵活性。例如,可通过SQL按时间或其他维度对数据进行切片。此外,MaxCompute还支持高级切片技术如分区表和分桶表等,进一步加速数据处理速度。掌握这些技术有助于高效应对大数据挑战。
119 0
|
5月前
|
分布式计算 运维 大数据
混合云模式下 MaxCompute + Hadoop 混搭大数据架构实践。
除了资源效率和成本的优势外,混合云模式还为斗鱼带来了可量化的成本、增值服务以及额外的专业服务。阿里云的专业团队可以为斗鱼提供技术咨询和解决方案,帮助斗鱼解决业务难题。此外,计算资源的可量化也使得斗鱼能够清晰地了解资源使用情况,为业务决策提供依据。
|
5月前
|
存储 SQL 机器学习/深度学习
阿里云数加大数据计算服务MaxCompute学习路线图:从入门到精通
将所学知识应用于实际工作中并不断进行实践和创新是提升技术能力的关键所在。用户可以结合业务需求和技术发展趋势积极探索新的应用场景和解决方案,并在实践中不断总结经验和教训以提升自己的技术水平和实践能力。
|
5月前
|
SQL 分布式计算 数据处理
SQL 能力问题之MaxCompute(ODPS)SQL有哪些特点
SQL 能力问题之MaxCompute(ODPS)SQL有哪些特点
|
24天前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
185 7