【Spark】【设置】关闭INFO提示

简介: 【Spark】【设置】关闭INFO提示

目的:关闭INFO提示

方法:通过修改配置文件实现

操作文件:Hadoop/conf/log4j.properties.template

操作1:复制模板文件使用

cp $SPARK_HOME/conf/log4j.properties.template $SPARK_HOME/conf/log4j.properties

操作2:修改配置文件

将配置文件中的

log4j.rootCategory=INFO, console

改为

log4j.rootCategory=WARN, console

:wq 保存退出

q1.png

相关文章
|
缓存 分布式计算 Linux
spark开发环境详细教程2:window下sbt库的设置
spark开发环境详细教程2:window下sbt库的设置
212 0
spark开发环境详细教程2:window下sbt库的设置
|
存储 缓存 资源调度
spark-submit 参数设置
spark-submit 参数设置
|
分布式计算 分布式数据库 数据库
Spark on HBase Connector:如何在Spark侧设置HBase参数
前言 X-Pack Spark可以使用Spark on HBase Connector直接对接HBase数据库,读取HBase数据表数据。有时在读取HBase时需要设置HBase的一些参数调整性能,例如通过设置hbase.client.scanner.caching的大小调整读取HBase数据的性能。
2195 0
|
SQL 分布式计算 数据库
Spark on Phoenix 4.x Connector:如何在Spark侧设置Phoenix参数
前言 X-Pack Spark可以使用Spark on Phoenix 4.x Connector直接对接Phoenix数据库,读取Phoenix数据表数据。有时在读取Phoenix时需要设置Phoenix的一些参数,例如Phoenix为了保障数据库的稳定性,默认开了索引包含,即查询Phoebe表必须要带上索引或者主键字段作为过滤条件。
1736 0
|
1月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
105 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
2月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
68 0
|
2月前
|
消息中间件 分布式计算 NoSQL
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
43 0
|
2月前
|
消息中间件 存储 分布式计算
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
98 0
|
1月前
|
SQL 机器学习/深度学习 分布式计算
Spark快速上手:揭秘大数据处理的高效秘密,让你轻松应对海量数据
【10月更文挑战第25天】本文全面介绍了大数据处理框架 Spark,涵盖其基本概念、安装配置、编程模型及实际应用。Spark 是一个高效的分布式计算平台,支持批处理、实时流处理、SQL 查询和机器学习等任务。通过详细的技术综述和示例代码,帮助读者快速掌握 Spark 的核心技能。
58 6