【Python数据分析 - 11】:DataFrame索引操作(pandas篇)

简介: 【Python数据分析 - 11】:DataFrame索引操作(pandas篇)

DataFrame索引操作


数据准备

b89e3f4489f042e2ac5738cfb987e271.png

准备的数据742d10700c8e421ca4466b73598f4bf9.png


重置索引 - reset_index()


  • 获得新的index,原来的index变为数据列,保留下来

551f0bd39fe940b485c257359e73f5de.png


若不想保留原来的index,使用参数drop=True,默认为False

d98abe9d1b0d4d7bbf9a2854e2866432.png



构建一个DataFrame


df = pd.DataFrame(
    {'水果':['苹果', '香蕉', '哈密瓜'], 
     '数量':[10, 20, 30], 
     '价格':[5, 10, 15],
     '产地':['上海', '广东', '深圳'],
     '包装厂':['大厂', '中厂', '小厂']
    })


94b34b2356e84443abf39d9b0d0416b8.png



设置其他列为索引 - set_index()


8e5e2ef73f194823b41d483809a79b02.png


注意:inplace=True 时才能真正的在原来的DataFrame上进行修改,默认为False

18391f1909394adb99d7236c5e4d3649.png




设置多个索引

设置多个索引时以列表的形式进行设置,它会重设索引,覆盖掉原来的索引。


7322679ba5124fe2b4e84ef6656aa394.png


7322679ba5124fe2b4e84ef6656aa394.png


修改列索引名


方法一:直接修改 - columns


b67e1be6b7b140bfb805b6fdad238120.png


方法二:rename方法


接收一个字典,键为旧索引,值为新索引

bb75cbdce27d48c49c3ca6db0dfd1de1.png


a57321fdd51e42e3bac9f82b585e020d.png


删除行或列 - drop()


  • 删除列


2439c559b1614c69b4895da1f7c5b5a4.png

b7019eb9a5f34eae9f204c2d797591b7.png

相关文章
|
28天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
62 0
|
27天前
|
SQL 数据采集 数据可视化
Pandas 数据结构 - DataFrame
10月更文挑战第26天
43 2
Pandas 数据结构 - DataFrame
|
14天前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第42天】本文将介绍如何使用Python进行数据分析和可视化。我们将从数据导入、清洗、探索性分析、建模预测,以及结果的可视化展示等方面展开讲解。通过这篇文章,你将了解到Python在数据处理和分析中的强大功能,以及如何利用这些工具来提升你的工作效率。
|
23天前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
39 2
|
12天前
|
数据采集 数据可视化 数据挖掘
掌握Python数据分析,解锁数据驱动的决策能力
掌握Python数据分析,解锁数据驱动的决策能力
|
20天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
20天前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南
|
22天前
|
SQL 数据挖掘 Python
数据分析编程:SQL,Python or SPL?
数据分析编程用什么,SQL、python or SPL?话不多说,直接上代码,对比明显,明眼人一看就明了:本案例涵盖五个数据分析任务:1) 计算用户会话次数;2) 球员连续得分分析;3) 连续三天活跃用户数统计;4) 新用户次日留存率计算;5) 股价涨跌幅分析。每个任务基于相应数据表进行处理和计算。
|
23天前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第33天】本文将介绍如何使用Python编程语言进行数据分析和可视化。我们将从数据清洗开始,然后进行数据探索性分析,最后使用matplotlib和seaborn库进行数据可视化。通过阅读本文,你将学会如何运用Python进行数据处理和可视化展示。
|
11天前
|
存储 数据挖掘 开发者
Python编程入门:从零到英雄
在这篇文章中,我们将一起踏上Python编程的奇幻之旅。无论你是编程新手,还是希望拓展技能的开发者,本教程都将为你提供一条清晰的道路,引导你从基础语法走向实际应用。通过精心设计的代码示例和练习,你将学会如何用Python解决实际问题,并准备好迎接更复杂的编程挑战。让我们一起探索这个强大的语言,开启你的编程生涯吧!