【VLDB】融合transformer和对抗学习的多变量异常检测算法TranAD论文和代码解读

简介: # 一、前言今天的文章来自VLDBTranAD: Deep Transformer Networks for Anomaly Detection in Multivariate Time Series Data![](https://ata2-img.oss-cn-zhangjiakou.aliyuncs.com/neweditor/10c1f546-c86d-4bec-b64c-7366

一、前言

今天的文章来自VLDB

TranAD: Deep Transformer Networks for Anomaly Detection in Multivariate Time Series Data

二、问题

在文章中提出了对于多变量异常检测的几个有挑战性的问题

  1. 缺乏异常的label
  2. 大数据量
  3. 在现实应用中需要尽可能少的推理时间(实时速度要求高)

在本文中,提出了基于transformer的模型TranAD,该模型使用基于注意力机制的序列编码器,利用数据中更广泛的时间趋势快速推断。TranAD使用基于score的自适应来实现鲁棒的多模态特征提取以及通过adversarial training以获得稳定性。此外,模型引入元学习(MAML)允许我们使用有限的数据来训练模型。

三、方法

3.1 问题定义

一个时间序列

因为是多变量时间序列,每一个X是一个大小为m的向量,即该序列有m个特征。

该工作定义了两种任务

  1. Anomaly Detection(检测):给予一个序列来预测目前时刻的异常情况(0或者1),1代表该数据点是异常的。
  2. Anomaly Diagnosis(诊断): 文中这块用denote which of the modes of the datapoint at the -th timestamp are anomalous.来描述,其实就是判断是哪几个维度的特征(mode)导致的实体的异常,诊断到维度模式的程度。

3.2 数据预处理

对数据做normalize,数据的保存形式,是一个实体一个npy文件,维度是(n, featureNum)

对数据进行滑窗,这里对于windowSize之前的数据并不舍去,而是用前面的数据直接复制,代码如下:

    windows = []; w_size = model.n_window
    for i, g in enumerate(data): 
        if i >= w_size: w = data[i-w_size:i]
        else: w = torch.cat([data[0].repeat(w_size-i, 1), data[0:i]])

3.3 模型

先看一下transformer的模型图。

模型本身和TranAD除了有两个decoder其他基本上完全一样,这里结构不赘述了,具体看

TranAD也省去了decoder中feed forward后的add&Norm,softmax也更改为sigmoid,文中提到sigmoid是把输出的数据拟合到输入数据的归一化状态中,即【0, 1】范围内。

这个图其实十分清晰,这个方法最大的创新不在模型本身,甚至模型没什么改动,主要引入了对抗训练的思想
解释下其中的变量

  • W为输入的窗口数据(前面数据预处理页提到了窗口数据的生成)
  • Focus Score是和W一样维度的变量,在第一阶段为0矩阵,第二阶段是通过W和O1的计算得出
  • C W的最后一个窗口数据

这个C变量,文中这样说。

其实看给的代码最好理解

    elif 'TranAD' in model.name:
        l = nn.MSELoss(reduction = 'none')
        data_x = torch.DoubleTensor(data); dataset = TensorDataset(data_x, data_x)
        bs = model.batch if training else len(data)
        dataloader = DataLoader(dataset, batch_size = bs)
        n = epoch + 1; w_size = model.n_window
        l1s, l2s = [], []
        if training:
            for d, _ in dataloader:
                local_bs = d.shape[0]
                window = d.permute(1, 0, 2) // 这个就是W
                elem = window[-1, :, :].view(1, local_bs, feats)  // 这个就是C
                z = model(window, elem)
                l1 = l(z, elem) if not isinstance(z, tuple) else (1 / n) * l(z[0], elem) + (1 - 1/n) * l(z[1], elem)
                if isinstance(z, tuple): z = z[1]
                l1s.append(torch.mean(l1).item())
                loss = torch.mean(l1)
                optimizer.zero_grad()
                loss.backward(retain_graph=True)
                optimizer.step()
            scheduler.step()
            tqdm.write(f'Epoch {epoch},\tL1 = {np.mean(l1s)}')
            return np.mean(l1s), optimizer.param_groups[0]['lr']

这里比较大的创新在于第一阶段和第二阶段的训练。

  • 第一阶段:为了更好的重构序列数据,和大部分encoder-decoder模型的作用没有什么不同
  • 第二阶段:引入对抗性训练的思想。

解读这个训练阶段之前,先把模型代码过一下。

class TranAD(nn.Module):
    def __init__(self, feats):
        super(TranAD, self).__init__()
        self.name = 'TranAD'
        self.lr = lr
        self.batch = 128
        self.n_feats = feats
        self.n_window = 10
        self.n = self.n_feats * self.n_window
        self.pos_encoder = PositionalEncoding(2 * feats, 0.1, self.n_window)
        encoder_layers = TransformerEncoderLayer(d_model=2 * feats, nhead=feats, dim_feedforward=16, dropout=0.1)
        self.transformer_encoder = TransformerEncoder(encoder_layers, 1)
        decoder_layers1 = TransformerDecoderLayer(d_model=2 * feats, nhead=feats, dim_feedforward=16, dropout=0.1)
        self.transformer_decoder1 = TransformerDecoder(decoder_layers1, 1)
        decoder_layers2 = TransformerDecoderLayer(d_model=2 * feats, nhead=feats, dim_feedforward=16, dropout=0.1)
        self.transformer_decoder2 = TransformerDecoder(decoder_layers2, 1)
        self.fcn = nn.Sequential(nn.Linear(2 * feats, feats), nn.Sigmoid())

    def encode(self, src, c, tgt):
        src = torch.cat((src, c), dim=2)
        src = src * math.sqrt(self.n_feats)
        src = self.pos_encoder(src)
        memory = self.transformer_encoder(src)
        tgt = tgt.repeat(1, 1, 2)
        return tgt, memory

    def forward(self, src, tgt):
        # Phase 1 - Without anomaly scores
        c = torch.zeros_like(src)
        x1 = self.fcn(self.transformer_decoder1(*self.encode(src, c, tgt)))
        # Phase 2 - With anomaly scores
        c = (x1 - src) ** 2
        x2 = self.fcn(self.transformer_decoder2(*self.encode(src, c, tgt)))
        return x1, x2

从代码可以看出来,虽然图中画的Window Encoder对于Decoder1和2来说是shared,但其实是分开的。

分别用transformer_decoder1和transformer_decoder2实现的。

第一阶段 Input Reconstruction

很多传统的encoder-decoder模型经常不能够获取short-term的趋势,会错过一些偏差很小的异常,为了解决这个问题,采用两个阶段的方式来进行重构。

在第一阶段,模型的目标是生成和输入窗口数据近似的reconstruction。对于这个推断的偏差,称之为focus score,有助于Transformer Encoder内部的注意力网络提取时间趋势,关注偏差高的子序列。(理解其实就是用与真实值的残差去拟合偏差高的序列,在第二阶段)

第一阶段下的focus score是0矩阵,与输入windows数据一致,输出O,与W计算L2 loss作为第一阶段的loss函数。

注意代码中的encode的部分,是将C和focus score直接concat再乘以sqrt(featureNum),之后再经过位置编码,其实文中只顺带说了一下而已,没有说为什么这么做,我个人倾向于为了将C和focus score信息放在一起,已concat常见的尝试揉在了一起。

第二阶段

将第一阶段O1与W的L2 loss作为focus score,在进行之前的步骤。这可以在第二阶段调整注意力权重,并为特定输入子序列提供更高的神经网络激活,以提取短期的时间趋势(这句话是文中说的,和我前面的那里理解基本上差不多)。

之后算是比较重点的地方了,引入对抗训练的思想,来设计第二阶段的loss这个地方十分的绕,建议大家读读原文的3.4 Offline Two-Phase Adversarial Training的Evolving Training Objective部分

  • 第二个decoder尽力去区分输入和第一阶段decoder1的重建,所以是max O2这个L2 loss(这里就会有疑问,decoder1的重建不是O1吗?为啥要max ||O2-W||2? 这里我从作者的角度去理解,其实他是一种条件近似转移,因为O1和O2再第一阶段都是近似W,那区别于第一阶段的decoder1的重建O1,其实就是区别于O2)
  • 第一个decoder尽力去通过创建一个接近W的O1来迷惑decoder2(其实就是想让这个focus score接近于0矩阵),其实就是min(W和O1),其实转移也就是min(W和O2),所以得到了下面这个公式

可以分解为:

再加上第一阶段的loss,总loss就是:

这里又对decoder1和decoder2做了明确的解释:

看代码理解

之后我们看下代码里的区别,代码里其实根本就没有算O2,只算了O1

在做反向传播,优化参数的时候也只算了L1的总loss,没有算L2


这里有个z的type判别,因为做了很多消融实验,不是最终的模型,最终就是后面那个L1loss,其中前面有个参数,是epoch+1,参数会随着训练轮数的增加,倒数慢慢变小,即前面的第一阶段的loss慢慢权重减小,而第二阶段的loss慢慢权重增大。

其实这也给出了一个我个人感觉非常合理的解释,因为第二阶段要附属于第一阶段的训练,应该先让O1和O2接近于W,之后才能去用对抗训练,这样才会让第二阶段训练有效,否则就混乱了。

现在再理解下这个,就完全明白了:


测试阶段,引入了阈值自动选择(POT,但代码中没有看到这的设置),以及score的计算

四、结果

对于异常的定义,是score大于阈值就是异常。


任意一个维度有异常就算作是异常,感觉这样描述本质上还是单序列的异常检测,没有从根本解决多变量的问题。

4.1 数据集


大部分常用数据集

4.2 结果

每一个维度都有reconstruction,并且每个维度都有对应的score,不得不说这个图示还是很清晰的,构建很清晰易懂。

后面还有各种实验,参数灵敏度、数据集等实验,这篇paper实验部分还是很满的,整体来说,工作量还是拉满的。

本文也对两种任务都做了实验,异常检测部分不用说了,常规操作,诊断部分采用 HitRate and NDCG两种指标进行root cause的检验。

五、总结和思考

  1. 对于代码,给出了每个对比模型和数据集,可以为后续实验做参考,并给出了整体消融实验的代码,代码还是很全面的,虽然有一些杂乱,但对于一个要做这个方向的同学来说,还是相当于巨人的肩膀的。
  2. 把transformer和对抗性训练放在一起,确实是很新颖的想法
  3. 在代码处O2部分为何省略存疑,以及第二阶段的loss,其实有点套的生硬,为何不都引到O1上,假设引到O1上,那loss1就只剩下L2 loss了,可能在公式上就并非这种对称了。
  4. 存疑的点就是 代码中在训练过程中并未对L2进行训练,这样的话O2是否像理论说的那样输出工作?
  5. 诊断的定义和诊断任务的探索,其实是有一些生硬的,并且也没完全说清楚,当然这篇文章标题是anomaly detection,其实并未将diagnosis算重点,所以这个也可以接受。
  6. 文章的标题是多变量的异常检测,其实虽然可以应用在多变量上,但实际还是单变量的异常来判别是否是多变量的整体实体的异常,本质还是用单变量问题解决多变量(这里可以探究一下,因为最终的score是由loss决定,而loss本身的维度是和输入的window数据一样的维度,意思就是每一个特征维度有一个score,所以其实得到的score还是单变量的score而并非实体的score,所以这里作者也没有探究多变量pattern的情况,可能存在多个变量异常,但只是一个跳变的pattern,不足以让整体异常的情况。)
  7. 代码里也没给出POT的相关代码。
目录
相关文章
|
18天前
|
负载均衡 算法
架构学习:7种负载均衡算法策略
四层负载均衡包括数据链路层、网络层和应用层负载均衡。数据链路层通过修改MAC地址转发帧;网络层通过改变IP地址实现数据包转发;应用层有多种策略,如轮循、权重轮循、随机、权重随机、一致性哈希、响应速度和最少连接数均衡,确保请求合理分配到服务器,提升性能与稳定性。
123 11
架构学习:7种负载均衡算法策略
|
10天前
|
机器学习/深度学习 人工智能 算法
Transformer打破三十年数学猜想!Meta研究者用AI给出反例,算法杀手攻克数学难题
《PatternBoost: Constructions in Mathematics with a Little Help from AI》提出了一种结合传统搜索算法和Transformer神经网络的PatternBoost算法,通过局部搜索和全局优化交替进行,成功应用于组合数学问题。该算法在图论中的Ramsey数研究中找到了更小的反例,推翻了一个30年的猜想,展示了AI在数学研究中的巨大潜力,但也面临可解释性和通用性的挑战。论文地址:https://arxiv.org/abs/2411.00566
47 13
|
2月前
|
机器学习/深度学习 自然语言处理 算法
调研180多篇论文,这篇综述终于把大模型做算法设计理清了
《A Systematic Survey on Large Language Models for Algorithm Design》综述了过去三年大型语言模型(LLMs)在算法设计中的应用。LLMs通过自然语言处理技术,助力生成、优化和验证算法,在优化、机器学习、数学推理等领域展现出广泛应用前景。尽管存在资源需求高、结果不确定等挑战,LLMs仍为算法设计带来新机遇。论文地址:https://arxiv.org/abs/2410.14716。
88 14
|
2月前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
246 30
|
3月前
|
存储 算法 安全
2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
数据结构与算法系列学习之串的定义和基本操作、串的储存结构、基本操作的实现、朴素模式匹配算法、KMP算法等代码举例及图解说明;【含常见的报错问题及其对应的解决方法】你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
|
3月前
|
机器学习/深度学习 监控 算法
基于反光衣和检测算法的应用探索
本文探讨了利用机器学习和计算机视觉技术进行反光衣检测的方法,涵盖图像预处理、目标检测与分类、特征提取等关键技术。通过YOLOv5等模型的训练与优化,展示了实现高效反光衣识别的完整流程,旨在提升智能检测系统的性能,应用于交通安全、工地监控等领域。
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
【EMNLP2024】基于多轮课程学习的大语言模型蒸馏算法 TAPIR
阿里云人工智能平台 PAI 与复旦大学王鹏教授团队合作,在自然语言处理顶级会议 EMNLP 2024 上发表论文《Distilling Instruction-following Abilities of Large Language Models with Task-aware Curriculum Planning》。
|
3月前
|
算法 安全 搜索推荐
2024重生之回溯数据结构与算法系列学习(8)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第2.3章之IKUN和I原达人之数据结构与算法系列学习x单双链表精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
3月前
|
算法 安全 搜索推荐
2024重生之回溯数据结构与算法系列学习之单双链表精题详解(9)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第2.3章之IKUN和I原达人之数据结构与算法系列学习x单双链表精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
3月前
|
算法 安全 NoSQL
2024重生之回溯数据结构与算法系列学习之栈和队列精题汇总(10)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第3章之IKUN和I原达人之数据结构与算法系列学习栈与队列精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!