Python 对象的序列和反序列化(上)

简介: 在 Python 中提供了一个 pickle 模块,pickle 模块实现了二进制协议。支持我们的对象数据的序列和反序列化。

1 概念

将对象转换为可保存状态(例如字节流、文本表示等)称为序列化,而反序列化将数据从上述格式转换回对象。


序列化格式会将内存中重建对象所需的所有信息保留在与序列化时相同的状态。


在 Python 中提供了一个 pickle 模块,pickle 模块实现了二进制协议。支持我们的对象数据的序列和反序列化。

2 存储 Python 原生对象:pickle 模块


pickle 模块能够让我们直接在文件中存储几乎任何 Python 对象的高级工具,同时不需要我们对字符串进行来回转换。它像是超级通用的数据格式化和解析工具。


pickle 包可用于执行 pickling 和 unpickling 操作。Python 中的 pickling 用于描述将 Python 对象转换为字节流的过程,也被称为序列化(serialization 或者 marshalling、flattening)。


unpickling 反之,将字节流(来自二进制文件或字节对象)转换为对象结构,这个过程又被叫反序列化(De-serialization)。


Python 的 pickle 模块基本上由四个方法组成:

  • dump()
pickle.dump(obj, file, protocol=None, *, fix_imports=True, buffer_callback=None)
  • dumps()
pickle.dumps(obj, protocol=None, *, fix_imports=True, buffer_callback=None)
  • load()
pickle.load(file, *, fix_imports=True, encoding="ASCII", errors="strict", buffers=None)
  • loads()
pickle.loads(bytes_object, *, fix_imports=True, encoding="ASCII", errors="strict", buffers=None)


序列化到字符串

前两个方法是在 pickling 过程中使用的,另外两个是在 unpickling 过程中使用的。dump()dumps()的唯一区别是,前者创建一个包含序列化结果的文件,而后者则返回一个字符串。


为了区分 dumps()dump(),记住函数名后面的 s 代表字符串是很有帮助的。同样的概念也适用于loads()load()。第一个函数对一个字符串进行操作。第二个读取一个文件以开始解压过程。


假如有如下的例子:

import pickle
my_dic = {"k1", 20, "k2", 22}
str_dic = pickle.dumps(my_dic)
print("序列化后 str_dic: ", str_dic)
my_dic2 = pickle.loads(str_dic)
print("反序列化的 my_dic2: ", my_dic2)


输出结果:

$ python pickle_dumps.py 
序列化后 str_dic:  b'\x80\x04\x95\x13\x00\x00\x00\x00\x00\x00\x00\x8f\x94(\x8c\x02k2\x94\x8c\x02k1\x94K\x14K\x16\x90.'
反序列化的 my_dic2:  {'k2', 'k1', 20, 22}


序列化到文件

import pickle
students = {
  "Name": ["张三", "法外狂徒", "张麻子"],
  "Major": ["社会学", "法律", "经济"]
}
print(students)


运行结果:

{'Name': ['张三', '法外狂徒', '张麻子'], 'Major': ['社会学', '法律', '经济']}


让我们尝试将学生对象 pickling 到二进制文件中。我们可以使用 dump() 函数来做到这一点。它需要两个参数:被 pickled 的对象和要写入数据的 File 对象。


以下代码将数据 pickle 到一个新文件 stu.txt,该文件将在脚本运行的同一目录中创建:

import pickle
students = {
  "Name": ["张三", "法外狂徒", "张麻子"],
  "Major": ["社会学", "法律", "经济"]
}
print(students)
stu_file = open('stu.txt', 'wb')
pickle.dump(students, stu_file)
stu_file.close()


运行完后,则会在同目录下多一个 stu.txt 文件,如下:


image.png


常规文本编辑器无法查看创建的文件的内容,因为它是二进制数据,并不意味着以人类可读的格式存储。要读取此信息,我们必须解压缩或反序列化此数据。我们可以使用 load() 函数来做到这一点!


load() 函数读取 pickled 文件的内容并返回通过读取数据构造的对象。对象的类型及其状态取决于文件的内容。


由于我们已经保存了一个包含学生姓名和专业的字典:这个具有相同条目的对象被重建。


让我们将刚刚创建的 pickled 文件 stu.txt 读回 Python 对象并打印其内容,新建一个 Python 文件,写入如下代码:

import pickle
stu_file = open("stu.txt", "rb")
stu_data = pickle.load(stu_file)
stu_file.close()
print("学生数据:", stu_data)


运行结果:

$ python3 unpickledtest.py
学生数据: {'Name': ['张三', '法外狂徒', '张麻子'], 'Major': ['社会学', '法律', '经济']}
相关文章
|
30天前
|
缓存 安全 PHP
PHP中的魔术方法与对象序列化
本文将深入探讨PHP中的魔术方法,特别是与对象序列化和反序列化相关的__sleep()和__wakeup()方法。通过实例解析,帮助读者理解如何在实际应用中有效利用这些魔术方法,提高开发效率和代码质量。
|
9天前
|
存储 安全 Java
Java编程中的对象序列化与反序列化
【10月更文挑战第22天】在Java的世界里,对象序列化和反序列化是数据持久化和网络传输的关键技术。本文将带你了解如何在Java中实现对象的序列化与反序列化,并探讨其背后的原理。通过实际代码示例,我们将一步步展示如何将复杂数据结构转换为字节流,以及如何将这些字节流还原为Java对象。文章还将讨论在使用序列化时应注意的安全性问题,以确保你的应用程序既高效又安全。
|
12天前
|
JSON 前端开发 数据格式
前端的全栈之路Meteor篇(五):自定义对象序列化的EJSON介绍 - 跨设备的对象传输
EJSON是Meteor框架中扩展了标准JSON的库,支持更多数据类型如`Date`、`Binary`等。它提供了序列化和反序列化功能,使客户端和服务器之间的复杂数据传输更加便捷高效。EJSON还支持自定义对象的定义和传输,通过`EJSON.addType`注册自定义类型,确保数据在两端无缝传递。
|
21天前
|
存储 编译器 索引
Python 序列类型(2)
【10月更文挑战第8天】
Python 序列类型(2)
|
22天前
|
存储 C++ 索引
Python 序列类型(1)
【10月更文挑战第8天】
|
22天前
|
存储 Java
Java编程中的对象序列化与反序列化
【10月更文挑战第9天】在Java的世界里,对象序列化是连接数据持久化与网络通信的桥梁。本文将深入探讨Java对象序列化的机制、实践方法及反序列化过程,通过代码示例揭示其背后的原理。从基础概念到高级应用,我们将一步步揭开序列化技术的神秘面纱,让读者能够掌握这一强大工具,以应对数据存储和传输的挑战。
|
28天前
|
存储 安全 Java
Java编程中的对象序列化与反序列化
【10月更文挑战第3天】在Java编程的世界里,对象序列化与反序列化是实现数据持久化和网络传输的关键技术。本文将深入探讨Java序列化的原理、应用场景以及如何通过代码示例实现对象的序列化与反序列化过程。从基础概念到实践操作,我们将一步步揭示这一技术的魅力所在。
|
30天前
|
JSON 缓存 NoSQL
Redis 在线查看序列化对象技术详解
Redis 在线查看序列化对象技术详解
32 2
|
9天前
|
存储 缓存 NoSQL
一篇搞懂!Java对象序列化与反序列化的底层逻辑
本文介绍了Java中的序列化与反序列化,包括基本概念、应用场景、实现方式及注意事项。序列化是将对象转换为字节流,便于存储和传输;反序列化则是将字节流还原为对象。文中详细讲解了实现序列化的步骤,以及常见的反序列化失败原因和最佳实践。通过实例和代码示例,帮助读者更好地理解和应用这一重要技术。
7 0
|
1月前
|
Python
深入解析 Python 中的对象创建与初始化:__new__ 与 __init__ 方法
深入解析 Python 中的对象创建与初始化:__new__ 与 __init__ 方法
17 1