Python编程:heapq模块堆排序

简介: 堆是一个二叉树,其中每个父节点的值都小于或等于其所有子节点的值。 整个堆的最小元素总是位于二叉树的根节点。 python的heapq模块提供了对堆的支持。 堆数据结构最重要的特征是heap[0]永远是最小的元素

堆是一个二叉树,其中每个父节点的值都小于或等于其所有子节点的值。

整个堆的最小元素总是位于二叉树的根节点。

python的heapq模块提供了对堆的支持。

堆数据结构最重要的特征是heap[0]永远是最小的元素


代码示例

import heapq

# 添加元素,容器是list列表,元素存放顺序是小根堆的顺序
h = []
heapq.heappush(h, 2)
heapq.heappush(h, 3)

h
Out[6]: 
[2, 3]


# 列表转换为堆
lst = [2, 3, 4, 6, 9, 1, 5]
heapq.heapify(lst)
lst
Out[9]: 
[1, 3, 2, 6, 9, 4, 5]


# 弹出最小值
heapq.heappop(lst)
Out[10]: 
1

lst
Out[11]: 
[2, 3, 4, 6, 9, 5]


# 弹出最小值,添加新元素
heapq.heapreplace(lst, 8)
Out[14]: 
2
lst
Out[15]: 
[3, 6, 4, 8, 9, 5]


# 和根元素比较,如果比其大则替换
heapq.heappushpop(lst, 4)
Out[16]: 
3
lst
Out[17]: 
[4, 6, 4, 8, 9, 5]

# 和根元素比较,如果比其小则不替换
heapq.heappushpop(lst, 3)
Out[18]: 
3
lst
Out[19]: 
[4, 6, 4, 8, 9, 5]


# 合并堆
h = [10, 11, 13]
l = heapq.merge(lst, h)
list(l)
Out[25]: 
[4, 6, 4, 8, 9, 5, 10, 11, 13]

# 查询最大的n个元素
heapq.nlargest(3, lst)
Out[26]: 
[9, 8, 6]

# 查询最小的n个元素
heapq.nsmallest(3, lst)
Out[27]: 
[4, 4, 5]

参考

  1. python3入门之堆(heapq)
  2. Python标准库模块之heapq
            </div>
目录
相关文章
|
7天前
|
数据采集 人工智能 安全
|
17天前
|
云安全 监控 安全
|
3天前
|
机器学习/深度学习 人工智能 前端开发
构建AI智能体:七十、小树成林,聚沙成塔:随机森林与大模型的协同进化
随机森林是一种基于决策树的集成学习算法,通过构建多棵决策树并结合它们的预测结果来提高准确性和稳定性。其核心思想包括两个随机性:Bootstrap采样(每棵树使用不同的训练子集)和特征随机选择(每棵树分裂时只考虑部分特征)。这种方法能有效处理大规模高维数据,避免过拟合,并评估特征重要性。随机森林的超参数如树的数量、最大深度等可通过网格搜索优化。该算法兼具强大预测能力和工程化优势,是机器学习中的常用基础模型。
285 164
|
1天前
|
机器学习/深度学习 自然语言处理 机器人
阿里云百炼大模型赋能|打造企业级电话智能体与智能呼叫中心完整方案
畅信达基于阿里云百炼大模型推出MVB2000V5智能呼叫中心方案,融合LLM与MRCP+WebSocket技术,实现语音识别率超95%、低延迟交互。通过电话智能体与座席助手协同,自动化处理80%咨询,降本增效显著,适配金融、电商、医疗等多行业场景。
290 155
|
4天前
|
机器学习/深度学习 人工智能 前端开发
构建AI智能体:六十九、Bootstrap采样在大模型评估中的应用:从置信区间到模型稳定性
Bootstrap采样是一种通过有放回重抽样来评估模型性能的统计方法。它通过从原始数据集中随机抽取样本形成多个Bootstrap数据集,计算统计量(如均值、标准差)的分布,适用于小样本和非参数场景。该方法能估计标准误、构建置信区间,并量化模型不确定性,但对计算资源要求较高。Bootstrap特别适合评估大模型的泛化能力和稳定性,在集成学习、假设检验等领域也有广泛应用。与传统方法相比,Bootstrap不依赖分布假设,在非正态数据中表现更稳健。
219 113
|
10天前
|
SQL 自然语言处理 调度
Agent Skills 的一次工程实践
**本文采用 Agent Skills 实现整体智能体**,开发框架采用 AgentScope,模型使用 **qwen3-max**。Agent Skills 是 Anthropic 新推出的一种有别于mcp server的一种开发方式,用于为 AI **引入可共享的专业技能**。经验封装到**可发现、可复用的能力单元**中,每个技能以文件夹形式存在,包含特定任务的指导性说明(SKILL.md 文件)、脚本代码和资源等 。大模型可以根据需要动态加载这些技能,从而扩展自身的功能。目前不少国内外的一些框架也开始支持此种的开发方式,详细介绍如下。
761 5