经典时间序列分析概述:技术、应用和模型
时间序列数据按时间顺序收集,具有时间维度的重要性,需专门技术和模型进行分析预测。其应用广泛,涵盖经济预测、风险管理、天气预报、气候建模、流行病学、患者监测、需求预测、客户行为分析及预测性维护等领域。时间序列特征包括趋势、季节性和周期性模式。自相关和偏自相关用于衡量数据点间关系,白噪声表示无自相关的时间序列。平稳性指统计特性随时间保持一致,对建模至关重要。常见模型包括ARMA、ARIMA、SARIMA、ARCH和GARCH,用于捕捉复杂动态并预测未来模式。选择合适模型和确定顺序对准确预测至关重要。掌握这些基础知识不仅增强对复杂模型的理解,还能确保预测方法的稳健性和可靠性。