大数据基础-yarn配置多资源队列

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: yarn配置多资源队列

我们增加2个队列,一个是online队列,一个是offline队列

online队列里面运行实时任务

offline队列里面运行离线任务

具体步骤如下:修改集群中 etc/hadoop 目录下的 capacity-scheduler.xml 配置文件修改和增加以下参数,针对已有的参数,修改value中的值,针对没有的参数,则直接增加这里的 default 是需要保留的,增加 online,offline ,这三个队列的资源比例为 7:1:2具体的比例需要根据实际的业务需求来,看你们那些类型的任务比较多,对应的队列中资源比例就调高一些,我们现在暂时还没有online任务,所以我就把online队列的资源占比设置的小一些。先修改bigdata01上的配置

1:指定多队列

<property>

 <name>yarn.scheduler.capacity.root.queues</name>

 <value>default,online,offline</value>

 <description>队列列表</description>

</property>

2.指定默认队列资源70%

<property>

 <name>

   yarn.scheduler.capacity.root.default.capacity

 </name>

 <value>70</value>

 <description>default队列70%</description>

</property>

3.另外两个队列的资源

<property>

<name>yarn.scheduler.capacity.root.online.capacity</name>

<value>10</value>

</property>

<property>

<name>yarn.scheduler.capacity.root.offline.capacity</name>

<value>20</value>

</property>

4.资源上线

<property>

<name>yarn.scheduler.capacity.root.default.maximum-capacity</name>

<value>70</value>

<description>Default队列可使用的资源上限.</description>

</property>

<property>

<name>yarn.scheduler.capacity.root.online.maximum-capacity</name>

<value>10</value>

</property>

<property>

<name>yarn.scheduler.capacity.root.offline.maximum-capacity</name>

<value>20</value>

</property>

分别拷贝到2号机和3号机

scp -rq capacity-scheduler.xml bigdata02:/data/soft/hadoop-3.2.0/etc/hadoop/

scp -rq capacity-scheduler.xml bigdata03:/data/soft/hadoop-3.2.0/etc/hadoop/

重启集群生效配置

网络异常,图片无法展示
|

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
目录
相关文章
|
2天前
|
消息中间件 资源调度 关系型数据库
如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理
本文介绍了如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理。主要内容包括安装Debezium、配置Kafka Connect、创建Flink任务以及启动任务的具体步骤,为构建实时数据管道提供了详细指导。
16 9
|
29天前
|
存储 分布式计算 druid
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(一)
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(一)
37 1
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(一)
|
29天前
|
运维 监控 数据可视化
大数据-171 Elasticsearch ES-Head 与 Kibana 配置 使用 测试
大数据-171 Elasticsearch ES-Head 与 Kibana 配置 使用 测试
52 1
|
29天前
|
消息中间件 分布式计算 druid
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(二)
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(二)
39 2
|
29天前
|
存储 消息中间件 druid
大数据-151 Apache Druid 集群模式 配置启动【上篇】 超详细!
大数据-151 Apache Druid 集群模式 配置启动【上篇】 超详细!
73 1
|
29天前
|
SQL 消息中间件 分布式计算
大数据-141 - ClickHouse 集群 副本和分片 Zk 的配置 Replicated MergeTree原理详解(一)
大数据-141 - ClickHouse 集群 副本和分片 Zk 的配置 Replicated MergeTree原理详解(一)
49 0
|
29天前
|
SQL 大数据
大数据-141 - ClickHouse 集群 副本和分片 Zk 的配置 Replicated MergeTree原理详解(二)
大数据-141 - ClickHouse 集群 副本和分片 Zk 的配置 Replicated MergeTree原理详解(二)
59 0
|
29天前
|
消息中间件 NoSQL Kafka
大数据-116 - Flink DataStream Sink 原理、概念、常见Sink类型 配置与使用 附带案例1:消费Kafka写到Redis
大数据-116 - Flink DataStream Sink 原理、概念、常见Sink类型 配置与使用 附带案例1:消费Kafka写到Redis
107 0
|
29天前
|
资源调度 分布式计算 大数据
大数据-111 Flink 安装部署 YARN部署模式 FlinkYARN模式申请资源、提交任务
大数据-111 Flink 安装部署 YARN部署模式 FlinkYARN模式申请资源、提交任务
80 0
|
28天前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势