DATA AI Summit 2022提及到的对 aggregate 的优化

简介: DATA AI Summit 2022提及到的对 aggregate 的优化

背景


本文基于SPARK 3.3.0


HashAggregate的优化

该优化是FaceBook(Meta) 内部的优化,还有合并到spark社区。

该优化的主要是partialaggregate的部分:对于类似求count,sum,Avg的聚合操作,会存在现在mapper进行部分聚合的操作,之后在reduce端,再进行FinalAggregate操作。这看起来是没有问题的(能够很好的减少网络IO),但是我们知道对于聚合操作,我们会进行数据的spill的操作,如果在mapper阶段合并的数据很少,以至于抵消不了网络IO带来的消耗的话,这无疑会给任务带来损耗。

874a8e4b1f2049e5b90b054e4a2abd1e.png

964d47901ff14cab9ac60e63955e30c8.png

4f02bf94d848458ebd2f0508d8ba3242.png

78dd4c6f123d42869975e1db8647f264.png

利用运行时的指标信息,能够达到比较好的加速效果。

7af2035a744d4819ba269e2200decc8f.png


ObjectHashAggregate的优化


对于ObjectHashAggreate的原理,可以参考深入理解SPARK SQL 中HashAggregateExec和ObjectHashAggregateExec以及UnsafeRow,该文可以比较清楚的解释ObjectHashAggregate和HashAggregate的区别:


ObjectHashAggregate能够弥补HashAggregate 不能支持collect_set等这种表达式,从而不会转变为SortAggregate

ObjectHashAggregate利用的是java Array对象(SpecificInternalRow)保存聚合的中间缓冲区,这对jvm gc是不太友好的

ObjectHashAggregate根据hashMap的size(默认是128),而不是输入的行数来进行spill,这会导致提前spill,内存利用率不高。

由于提前的spill,ObjectHashAggregate会对剩下的所有数据做额外的一次排序操作(如果没有spill,就不需要额外的sort操作),而HashAggregate则是会对每次需要spill的数据做排序

使用jvm heap的内存使用情况以及处理的行数来指导什么时候开始spill。

但是这种在数据倾斜的情况下,会增加OOM的风险。


SortAggregate优化


目前SortAggreaget的现状是:


每个任务在sort Aggreate前需要按照key进行排序

根据排序的结果,在相邻的行之间进行聚合操作

不同于Hash Aggregate:

不需要hashTable,也就不存在内存溢写和回退到sortAggregate

优化器更喜欢选择hashAggregate

没有codegen的实现.

目前在spark 3.3.0增加的功能:


如果数据是有序的话,会选择用sortAggragate替代HashAggregate

通过物理计划Rule ReplaceHashWithSortAgg 来做替换,当然通过spark.sql.execution.replaceHashWithSortAgg来开启(默认是关闭的),因为对于任何新特性,在release版本默认都是关闭的,在master分支才是开启的

支持sortAggretate(without keys)的codegen代码生成


其他


对于Aggregate更多的细节了解可以参考sparksql源码系列 | 一文搞懂with one count distinct 执行原理

相关文章
|
21天前
|
人工智能 关系型数据库 分布式数据库
拥抱Data+AI|“全球第一”雅迪如何实现智能营销?DMS+PolarDB注入数据新活力
针对雅迪“云销通App”的需求与痛点,本文将介绍阿里云瑶池数据库DMS+PolarDB for AI提供的一站式Data+AI解决方案,助力销售人员高效用数,全面提升销售管理效率。
|
5天前
|
存储 人工智能 算法
【AI系统】计算图的优化策略
本文深入探讨了计算图的优化策略,包括算子替换、数据类型转换、存储优化等,旨在提升模型性能和资源利用效率。特别介绍了Flash Attention算法,通过分块计算和重算策略优化Transformer模型的注意力机制,显著减少了内存访问次数,提升了计算效率。此外,文章还讨论了内存优化技术,如Inplace operation和Memory sharing,进一步减少内存消耗,提高计算性能。
58 34
【AI系统】计算图的优化策略
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
Llama 3.3:Meta AI 开源新的纯文本语言模型,专注于多语言对话优化
Meta AI推出的Llama 3.3是一款70B参数的纯文本语言模型,支持多语言对话,具备高效、低成本的特点,适用于多种应用场景,如聊天机器人、客户服务自动化、语言翻译等。
43 13
Llama 3.3:Meta AI 开源新的纯文本语言模型,专注于多语言对话优化
|
5天前
|
机器学习/深度学习 存储 人工智能
【AI系统】离线图优化技术
本文回顾了计算图优化的各个方面,包括基础优化、扩展优化和布局与内存优化,旨在提高计算效率。基础优化涵盖常量折叠、冗余节点消除、算子融合、算子替换和算子前移等技术。这些技术通过减少不必要的计算和内存访问,提高模型的执行效率。文章还探讨了AI框架和推理引擎在图优化中的应用差异,为深度学习模型的优化提供了全面的指导。
19 5
【AI系统】离线图优化技术
|
5天前
|
存储 机器学习/深度学习 人工智能
【AI系统】计算图优化架构
本文介绍了推理引擎转换中的图优化模块,涵盖算子融合、布局转换、算子替换及内存优化等技术,旨在提升模型推理效率。计算图优化技术通过减少计算冗余、提高计算效率和减少内存占用,显著改善模型在资源受限设备上的运行表现。文中详细探讨了离线优化模块面临的挑战及解决方案,包括结构冗余、精度冗余、算法冗余和读写冗余的处理方法。此外,文章还介绍了ONNX Runtime的图优化机制及其在实际应用中的实现,展示了如何通过图优化提高模型推理性能的具体示例。
29 4
【AI系统】计算图优化架构
|
8天前
|
存储 人工智能 编译器
【AI系统】算子手工优化
本文深入探讨了手写算子调度的关键因素及高性能算子库的介绍,通过计算分析指标和 RoofLine 模型评估计算与访存瓶颈,提出了循环、指令、存储三大优化策略,并介绍了 TVM 和 Triton 两种 DSL 开发算子的方法及其在实际应用中的表现。
19 2
【AI系统】算子手工优化
|
14天前
|
存储 人工智能 自然语言处理
拥抱Data+AI|B站引入阿里云DMS+X,利用AI赋能运营效率10倍提升
本篇文章针对B站在运营场景中的痛点,深入探讨如何利用阿里云Data+AI解决方案实现智能问数服务,赋能平台用户和运营人员提升自助取数和分析能力,提高价值交付效率的同时为数据平台减负。
拥抱Data+AI|B站引入阿里云DMS+X,利用AI赋能运营效率10倍提升
|
1月前
|
人工智能 数据挖掘 数据库
拥抱Data+AI|破解电商7大挑战,DMS+AnalyticDB助力企业智能决策
本文为数据库「拥抱Data+AI」系列连载第1篇,该系列是阿里云瑶池数据库面向各行业Data+AI应用场景,基于真实客户案例&最佳实践,展示Data+AI行业解决方案的连载文章。本篇内容针对电商行业痛点,将深入探讨如何利用数据与AI技术以及数据分析方法论,为电商行业注入新的活力与效能。
拥抱Data+AI|破解电商7大挑战,DMS+AnalyticDB助力企业智能决策
|
28天前
|
存储 人工智能 关系型数据库
拥抱Data+AI|解码Data+AI助力游戏日志智能分析
「拥抱Data+AI」系列第2篇:阿里云DMS+AnalyticDB助力游戏日志数据分析与预测
拥抱Data+AI|解码Data+AI助力游戏日志智能分析
|
8天前
|
机器学习/深度学习 人工智能 算法
【AI系统】AI 编译器后端优化
AI编译器采用多层架构,首先通过前端优化将不同框架的模型转化为统一的Graph IR并进行计算图级别的优化,如图算融合、内存优化等。接着,通过后端优化,将优化后的计算图转换为TensorIR,针对单个算子进行具体实现优化,包括循环优化、算子融合等,以适应不同的硬件架构,最终生成高效执行的机器代码。后端优化是提升算子性能的关键步骤,涉及复杂的优化策略和技术。
24 3