Python生成词云图太简单了|拿来就用能的Python词云图代码

简介: Python生成词云图太简单了|拿来就用能的Python词云图代码

词云也叫文字云,是一种可视化的结果呈现,常用在爬虫数据分析中,原理就是统计文本中高频出现的词,过滤掉某些干扰词,将结果生成一张图片,直观的获取数据的重点信息。今天,我们就来学习一下Python生成词云的常用库「wordcloud」

「安装」:pip install wordcloud

github项目:https://github.com/amueller/word_cloud

「wordcloud」对象有很多参数设定,可以绘制不同形状、颜色和尺寸的词云图。

WordCloud对象常用参数

img

WordCloud常用方法

img

wordcloud默认是为了英文文本来做词云的,如果需要制作中文文本词云,就需要先对中文进行分词。这里就需要用到中文分词库「jieba」

jieba

「jieba」是优秀的中文分词库,需要安装。它的原理是利用一个中文词库,确定中文字符之间的关联概率,汉字间概率大的组成词组,形成分词结果,除了分词,还可以添加自定义词组。

安装:pip install jieba

jieba有三种分词模式,这里我们只学习它的精确模式,把文本精确的切分开,不存在冗余单词。

使用jieba.lcut(s),返回列表型分词结果。当然,也可以使用jieba.add_word(w)向jieba库中增加词语。

词云案例

爬取最近很火的一部电影《你好,李焕英 》的影评数据,生成词云。

「获取10页短评数据,保存到文本中。」

import requests
from bs4 import BeautifulSoup
import time
import random
urls=['https://movie.douban.com/subject/34841067/comments?start={}&limit=20&status=P&sort=new_score'.format(str(i)) for i in range(0, 200, 20)] #通过观察的url翻页的规律,使用for循环得到10个链接,保存到urls列表中
print(urls)
dic_h = {
    "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36"}
comments_list = [] #初始化用于保存短评的列表

for url in urls: #使用for循环分别获取每个页面的数据,保存到comments_list列表
    r = requests.get(url=url,headers = dic_h).text

    soup = BeautifulSoup(r, 'lxml')
    ul = soup.find('div',id="comments")
    lis= ul.find_all('p')

    list2 =[]
    for li in lis:
        list2.append(li.find('span').string)
    # print(list2)
    comments_list.extend(list2)
    time.sleep(random.randint(0,3)) # 暂停0~3秒
    
with open('lhy_comments.txt', 'w', encoding='utf-8') as f: #使用with open()新建对象f
    # 将列表中的数据循环写入到文本文件中
    for i in comments_list:
        f.write(i+"\n") #写入数据

使用wordcloud生成词云的步骤

「1.读取文件,分词整理」

「2.配置对象参数,加载词云文本」

「3.计算词频,输出词云文件」

基本的词云

import jieba
import wordcloud
# 读取文本
with open("lhy_comments.txt",encoding="utf-8") as f:
    s = f.read()
print(s)
ls = jieba.lcut(s) # 生成分词列表
text = ' '.join(ls) # 连接成字符串


stopwords = ["的","是","了"] # 去掉不需要显示的词

wc = wordcloud.WordCloud(font_path="msyh.ttc",
                         width = 1000,
                         height = 700,
                         background_color='white',
                         max_words=100,stopwords=s)
# msyh.ttc电脑本地字体,写可以写成绝对路径
wc.generate(text) # 加载词云文本
wc.to_file("李焕英1.png") # 保存词云文件

词云效果如下:

img

添加蒙版图片的词云

可以将有白色背景的图片作为蒙版图片,有图案的地方会被词云填充。

添加蒙版图片需要使用PIL,numpy库。

添加蒙版图片如下:

img

# 示例代码
from wordcloud import WordCloud
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import jieba

# 打开文本
with open("lhy_comments.txt",encoding="utf-8") as f:
    s = f.read()

# 中文分词
text = ' '.join(jieba.cut(s))

# 生成对象
img = Image.open("mask_pic.png") # 打开遮罩图片
mask = np.array(img) #将图片转换为数组

stopwords = ["我","你","她","的","是","了","在","也","和","就","都","这"]
wc = WordCloud(font_path="msyh.ttc",
               mask=mask,
               width = 1000,
               height = 700,
               background_color='white',
               max_words=200,
               stopwords=stopwords).generate(text)

# 显示词云
plt.imshow(wc, interpolation='bilinear')# 用plt显示图片
plt.axis("off")  # 不显示坐标轴
plt.show() # 显示图片

# 保存到文件
wc.to_file("李焕英2.png")

词云效果如下:

img

目录
相关文章
|
10天前
|
测试技术 Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界中,装饰器是那些能够为我们的代码增添魔力的小精灵。它们不仅让代码看起来更加优雅,还能在不改变原有函数定义的情况下,增加额外的功能。本文将通过生动的例子和易于理解的语言,带你领略装饰器的奥秘,从基础概念到实际应用,一起开启Python装饰器的奇妙旅程。
28 11
|
25天前
|
缓存 监控 测试技术
Python中的装饰器:功能扩展与代码复用的利器###
本文深入探讨了Python中装饰器的概念、实现机制及其在实际开发中的应用价值。通过生动的实例和详尽的解释,文章展示了装饰器如何增强函数功能、提升代码可读性和维护性,并鼓励读者在项目中灵活运用这一强大的语言特性。 ###
|
28天前
|
缓存 开发者 Python
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第35天】装饰器在Python中是一种强大的工具,它允许开发者在不修改原有函数代码的情况下增加额外的功能。本文旨在通过简明的语言和实际的编码示例,带领读者理解装饰器的概念、用法及其在实际编程场景中的应用,从而提升代码的可读性和复用性。
|
29天前
|
设计模式 缓存 监控
Python中的装饰器:代码的魔法增强剂
在Python编程中,装饰器是一种强大而灵活的工具,它允许程序员在不修改函数或方法源代码的情况下增加额外的功能。本文将探讨装饰器的定义、工作原理以及如何通过自定义和标准库中的装饰器来优化代码结构和提高开发效率。通过实例演示,我们将深入了解装饰器的应用,包括日志记录、性能测量、事务处理等常见场景。此外,我们还将讨论装饰器的高级用法,如带参数的装饰器和类装饰器,为读者提供全面的装饰器使用指南。
|
24天前
|
Python
探索Python中的装饰器:简化代码,提升效率
【10月更文挑战第39天】在编程的世界中,我们总是在寻找使代码更简洁、更高效的方法。Python的装饰器提供了一种强大的工具,能够让我们做到这一点。本文将深入探讨装饰器的基本概念,展示如何通过它们来增强函数的功能,同时保持代码的整洁性。我们将从基础开始,逐步深入到装饰器的高级用法,让你了解如何利用这一特性来优化你的Python代码。准备好让你的代码变得更加优雅和强大了吗?让我们开始吧!
24 1
|
25天前
|
存储 缓存 监控
掌握Python装饰器:提升代码复用性与可读性的利器
在本文中,我们将深入探讨Python装饰器的概念、工作原理以及如何有效地应用它们来增强代码的可读性和复用性。不同于传统的函数调用,装饰器提供了一种优雅的方式来修改或扩展函数的行为,而无需直接修改原始函数代码。通过实际示例和应用场景分析,本文旨在帮助读者理解装饰器的实用性,并鼓励在日常编程实践中灵活运用这一强大特性。
|
29天前
|
存储 算法 搜索推荐
Python高手必备!揭秘图(Graph)的N种风骚表示法,让你的代码瞬间高大上
在Python中,图作为重要的数据结构,广泛应用于社交网络分析、路径查找等领域。本文介绍四种图的表示方法:邻接矩阵、邻接表、边列表和邻接集。每种方法都有其特点和适用场景,掌握它们能提升代码效率和可读性,让你在项目中脱颖而出。
34 5
|
27天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
42 2
|
29天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
59 4
|
29天前
|
API 数据处理 Python
探秘Python并发新世界:asyncio库,让你的代码并发更优雅!
在Python编程中,随着网络应用和数据处理需求的增长,并发编程变得愈发重要。asyncio库作为Python 3.4及以上版本的标准库,以其简洁的API和强大的异步编程能力,成为提升性能和优化资源利用的关键工具。本文介绍了asyncio的基本概念、异步函数的定义与使用、并发控制和资源管理等核心功能,通过具体示例展示了如何高效地编写并发代码。
35 2