【DSW Gallery】HybridBackend 极简教程: 在 GPU 上加速推荐模型训练

简介: 本文介绍了如何使用 HybridBackend 在 GPU 上加速一个示例推荐模型的训练。HybridBackend 是阿里巴巴提供的一个工业级稀疏模型训练框架,可以帮助用户轻松提升GPU上的稀疏模型训练的计算吞吐。

直接使用

请打开HybridBackend 极简教程: 在 GPU 上加速推荐模型训练,并点击右上角 “ 在DSW中打开” 。

image.png


HybridBackend Quickstart

In this tutorial, we use HybridBackend to speed up training of a sample ranking model based on stacked DCNv2 on Taobao ad click datasets.

Why HybridBackend

  • Training industrial recommendation models can benefit greatly from GPUs
  • Embedding layer becomes wider, consuming up to thousands of feature fields, which requires larger memory bandwidth;
  • Feature interaction layer is going deeper by leveraging multiple DNN submodules over different subsets of features, which requires higher computing capability;
  • GPUs provide much higher computing capability, larger memory bandwidth, and faster data movement;
  • Industrial recommendation models do not take full advantage of the GPU resources by canonical training frameworks
  • Industrial recommendation models contain up to a thousand of input feature fields, introducing fragmentary and memory-intensive operations;
  • The multiple constituent feature interaction submodules introduce substantial small-sized compute kernels;
  • Training framework of industrial recommendation models must be less-invasive and compatible with existing workflow
  • Training is only a part of production recommendation system, it needs great effort to modify inference pipeline;
  • AI scientists write models in a variety of ways, especially in a big team.

HybridBackend enables speeding up of training industrial recommendation models on GPUs with minimum effort. In this tutorial, you will learn how to use HybridBackend to make training of industrial recommendation models much faster.

See HybridBackend GitHub repo and the paper for more information.

Requirements

  • Hardware
  • Modern GPU and interconnect (e.g. A10 / PCIe Gen4)
  • Fast data storage (e.g. ESSD)
  • Software
  • Ubuntu 20.04 or above
  • Python 3.8 or above
  • CUDA 11.4
  • TensorFlow 1.15
  • TFRecord Format
  • Parquet Format
!pip3 install hybridbackend-tf115-cu114

Sample ranking model

In this tutorial, a sample ranking model based on stacked DCNv2 is used. You can see code in ranking for more details.

import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf
from tensorflow.python.util import module_wrapper as deprecation
deprecation._PER_MODULE_WARNING_LIMIT = 0
tf.get_logger().propagate = False
from ranking.data import DataSpec
from ranking.model import stacked_dcn_v2
from ranking.model import wide_and_deep_features
# Global configuration
train_max_steps = 100
train_batch_size = 16000
data_spec = DataSpec.read('ranking/taobao/data/spec.json')
def train(iterator, embedding_weight_device, dnn_device, hooks):
  batch = iterator.get_next()
  batch.pop('ts')
  labels = tf.reshape(tf.to_float(batch.pop('label')), shape=[-1, 1])
  wide_features, deep_features = wide_and_deep_features(
    batch,
    data_spec.defaults,
    data_spec.norms,
    data_spec.logs,
    data_spec.embedding_dims,
    data_spec.embedding_sizes,
    embedding_weight_device)
  with tf.device(dnn_device):
    logits = stacked_dcn_v2(
      wide_features + deep_features,
      [1024, 1024, 512, 256, 1])
    loss = tf.reduce_mean(tf.keras.losses.binary_crossentropy(labels, logits))
    step = tf.train.get_or_create_global_step()
    opt = tf.train.AdagradOptimizer(learning_rate=0.001)
    train_op = opt.minimize(loss, global_step=step)
  hooks.append(tf.train.StepCounterHook(10))
  hooks.append(tf.train.StopAtStepHook(train_max_steps))
  config = tf.ConfigProto(allow_soft_placement=True)
  config.gpu_options.allow_growth = True
  config.gpu_options.force_gpu_compatible = True
  with tf.train.MonitoredTrainingSession(
      '', hooks=hooks, config=config) as sess:
    while not sess.should_stop():
      sess.run(train_op)

Training without HybridBackend

Without HybridBackend, training the sample ranking model underutilizes GPUs.

# Download training data in TFRecord format
!wget http://easyrec.oss-cn-beijing.aliyuncs.com/data/taobao/day_0.tfrecord
with tf.Graph().as_default():
  ds = tf.data.TFRecordDataset('./day_0.tfrecord', compression_type='GZIP')
  ds = ds.batch(train_batch_size, drop_remainder=True)
  ds = ds.map(
    lambda batch: tf.io.parse_example(batch, data_spec.to_example_spec()))
  ds = ds.prefetch(2)
  iterator = tf.data.make_one_shot_iterator(ds)
  with tf.device('/gpu:0'):
    train(iterator, '/cpu:0', '/gpu:0', [])

Training with HybridBackend

By just one-line importing, HybridBackend uses packing and interleaving to speed up embedding layers dramatically and automatically.

# Note: Once HybridBackend is on, you need to restart notebook to turn it off.
import hybridbackend.tensorflow as hb
# Exact same code except HybridBackend is on.
with tf.Graph().as_default():
  ds = tf.data.TFRecordDataset('./day_0.tfrecord', compression_type='GZIP')
  ds = ds.batch(train_batch_size, drop_remainder=True)
  ds = ds.map(
    lambda batch: tf.io.parse_example(batch, data_spec.to_example_spec()))
  ds = ds.prefetch(2)
  iterator = tf.data.make_one_shot_iterator(ds)
  with tf.device('/gpu:0'):
    train(iterator, '/cpu:0', '/gpu:0', [])

Training with HybridBackend (Optimized data pipeline)

Even greater training performance gains can be archived if we use optimized data pipeline provided by HybridBackend.

# Download training data in Parquet format
!wget http://easyrec.oss-cn-beijing.aliyuncs.com/data/taobao/day_0.parquet
# Note: Once HybridBackend is on, you need to restart notebook to turn it off.
import hybridbackend.tensorflow as hb
with tf.Graph().as_default():
  ds = hb.data.ParquetDataset(
    './day_0.parquet',
    batch_size=train_batch_size,
    num_parallel_parser_calls=tf.data.experimental.AUTOTUNE,
    drop_remainder=True)
  ds = ds.apply(hb.data.to_sparse())
  ds = ds.prefetch(2)
  iterator = tf.data.make_one_shot_iterator(ds)
  with tf.device('/gpu:0'):
    iterator = hb.data.Iterator(iterator, 2)
    train(iterator, '/cpu:0', '/gpu:0', [hb.data.Iterator.Hook()])


相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
相关文章
|
10月前
|
人工智能 Linux iOS开发
exo:22.1K Star!一个能让任何人利用日常设备构建AI集群的强大工具,组成一个虚拟GPU在多台设备上并行运行模型
exo 是一款由 exo labs 维护的开源项目,能够让你利用家中的日常设备(如 iPhone、iPad、Android、Mac 和 Linux)构建强大的 AI 集群,支持多种大模型和分布式推理。
2369 101
|
7月前
|
数据可视化 Rust 机器学习/深度学习
mlop.ai 无脑使用教程 (机器学习工具 WandB/ClearML 的首个国区开源平替)
mlop.ai 是首个为国区用户优化的机器学习工具,全栈免费开源,是主流付费解决方案 ClearML/WandB 的开源平替。常规实验追踪的工具经常大幅人为降速,mlop因为底层为Rust代码,能轻松支持高频数据写入。如需更多开发者帮助或企业支持,敬请联系cn@mlop.ai
413 12
mlop.ai 无脑使用教程 (机器学习工具 WandB/ClearML 的首个国区开源平替)
|
9月前
|
存储 测试技术 对象存储
容器计算服务ACS单张GPU即可快速搭建QwQ-32B推理模型
阿里云最新发布的QwQ-32B模型拥有320亿参数,通过强化学习大幅度提升了模型推理能力,其性能与DeepSeek-R1 671B媲美,本文介绍如何使用ACS算力部署生产可用的QwQ-32B模型推理服务。
|
9月前
|
人工智能 自然语言处理 API
Proxy Lite:仅3B参数的开源视觉模型!快速实现网页自动化,支持在消费级GPU上运行
Proxy Lite 是一款开源的轻量级视觉语言模型,支持自动化网页任务,能够像人类一样操作浏览器,完成网页交互、数据抓取、表单填写等重复性工作,显著降低自动化成本。
680 11
Proxy Lite:仅3B参数的开源视觉模型!快速实现网页自动化,支持在消费级GPU上运行
|
9月前
|
存储 人工智能 固态存储
轻量级AI革命:无需GPU就能运算的DeepSeek-R1-1.5B模型及其低配部署指南
随着AI技术发展,大语言模型成为产业智能化的关键工具。DeepSeek系列模型以其创新架构和高效性能备受关注,其中R1-1.5B作为参数量最小的版本,适合资源受限场景。其部署仅需4核CPU、8GB RAM及15GB SSD,适用于移动对话、智能助手等任务。相比参数更大的R1-35B与R1-67B+,R1-1.5B成本低、效率高,支持数学计算、代码生成等多领域应用,是个人开发者和初创企业的理想选择。未来,DeepSeek有望推出更多小型化模型,拓展低资源设备的AI生态。
1876 8
|
10月前
|
机器学习/深度学习 人工智能 并行计算
Unsloth:学生党福音!开源神器让大模型训练提速10倍:单GPU跑Llama3,5小时变30分钟
Unsloth 是一款开源的大语言模型微调工具,支持 Llama-3、Mistral、Phi-4 等主流 LLM,通过优化计算步骤和手写 GPU 内核,显著提升训练速度并减少内存使用。
1487 3
Unsloth:学生党福音!开源神器让大模型训练提速10倍:单GPU跑Llama3,5小时变30分钟
|
10月前
|
存储 人工智能 算法
Magic 1-For-1:北大联合英伟达推出的高质量视频生成量化模型,支持在消费级GPU上快速生成
北京大学、Hedra Inc. 和 Nvidia 联合推出的 Magic 1-For-1 模型,优化内存消耗和推理延迟,快速生成高质量视频片段。
565 3
Magic 1-For-1:北大联合英伟达推出的高质量视频生成量化模型,支持在消费级GPU上快速生成
|
10月前
|
人工智能 自然语言处理 物联网
阿里万相重磅开源,人工智能平台PAI一键部署教程来啦
阿里云视频生成大模型万相2.1(Wan)重磅开源!Wan2.1 在处理复杂运动、还原真实物理规律、提升影视质感以及优化指令遵循方面具有显著的优势,轻松实现高质量的视频生成。同时,万相还支持业内领先的中英文文字特效生成,满足广告、短视频等领域的创意需求。阿里云人工智能平台 PAI-Model Gallery 现已经支持一键部署阿里万相重磅开源的4个模型,可获得您的专属阿里万相服务。
|
9月前
|
存储 文件存储 对象存储
AI 场景下,函数计算 GPU 实例模型存储最佳实践
AI 场景下,函数计算 GPU 实例模型存储最佳实践
225 0
|
11月前
|
存储 文件存储 对象存储
AI 场景下,函数计算 GPU 实例模型存储最佳实践
当前,函数计算 FC 已被广泛应用在各种 AI 场景下,函数计算支持通过使用容器镜像部署 AI 推理应用,并且提供多种选项来访问训练好的模型。为了帮助开发者高效地在函数计算上部署 AI 推理应用,并快速解决不同场景下的模型存储选型问题,本文将对函数计算的 GPU 模型存储的优缺点及适用场景进行对比分析,以期为您的模型存储决策提供帮助。

热门文章

最新文章

相关产品

  • 人工智能平台 PAI